Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Leukemia-Related Protein is a Master Editor of the "Histone Code"

28.11.2002


Rearrangements of the mixed lineage leukemia gene, MLL, are associated with aggressive leukemias in both children and adults. Researchers at the University of Pennsylvania School of Medicine have found that one portion of the MLL protein is an enzyme that "edits" the so-called histone code, a series of modifications to proteins associated with DNA that influence how and when certain genes are turned on and off. Their findings are presented in the November issue of Molecular Cell.



When functioning properly, the MLL protein regulates the expression of Hox genes, which play a role in cell growth and development. In some leukemias MLL is rearranged so that the cells are unable to turn off Hox genes. The Penn investigators found that a portion of the MLL protein binds directly to the Hox genes and edits the histone code at these sites. A rearranged form of MLL that causes leukemia also upregulated Hox expression but with a different "code". Presumably the differences in the pattern of histone modifications accounts for their deregulated expression in leukemia.

The histone code hypothesis was first outlined by Dr. C. David Allis and colleagues, of the University of Virginia Health System, a co-author on this paper. The theory, which rapidly is gaining acceptance, postulates that expression of certain regions of DNA is turned on and off by modifying portions of histone proteins or DNA. Modified histones and DNA attract the cell’s gene-reading machinery via specific interactions with these elements of the histone code.


According to Jay L. Hess MD, PhD, of Penn’s Department of Pathology and Laboratory Medicine and senior author of the study, these results underscore the importance of the histone code in developmental biology and disease. "Domains similar to those with histone modifying activity in MLL are found in other proteins implicated in human tumors including acute leukemia, lymphoma, and prostate cancer and probably have a similar function. What is encouraging is that proteins with enzymatic activity are good targets for drug development. These are definitely exciting times for cancer biologists."

This study was supported by grants from the Leukemia and Lymphoma Society, the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, and the Genetics Institute of the Canadian Institute for Health Research.

Co-authors of this study include Tom Milne, Denise Gibbs, and Mary Ellen Martin, of Penn, Scott D. Briggs and C. David Allis of the University of Virginia Health System, and Hugh Brock of the University of British Columbia.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>