Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Leukemia-Related Protein is a Master Editor of the "Histone Code"

28.11.2002


Rearrangements of the mixed lineage leukemia gene, MLL, are associated with aggressive leukemias in both children and adults. Researchers at the University of Pennsylvania School of Medicine have found that one portion of the MLL protein is an enzyme that "edits" the so-called histone code, a series of modifications to proteins associated with DNA that influence how and when certain genes are turned on and off. Their findings are presented in the November issue of Molecular Cell.



When functioning properly, the MLL protein regulates the expression of Hox genes, which play a role in cell growth and development. In some leukemias MLL is rearranged so that the cells are unable to turn off Hox genes. The Penn investigators found that a portion of the MLL protein binds directly to the Hox genes and edits the histone code at these sites. A rearranged form of MLL that causes leukemia also upregulated Hox expression but with a different "code". Presumably the differences in the pattern of histone modifications accounts for their deregulated expression in leukemia.

The histone code hypothesis was first outlined by Dr. C. David Allis and colleagues, of the University of Virginia Health System, a co-author on this paper. The theory, which rapidly is gaining acceptance, postulates that expression of certain regions of DNA is turned on and off by modifying portions of histone proteins or DNA. Modified histones and DNA attract the cell’s gene-reading machinery via specific interactions with these elements of the histone code.


According to Jay L. Hess MD, PhD, of Penn’s Department of Pathology and Laboratory Medicine and senior author of the study, these results underscore the importance of the histone code in developmental biology and disease. "Domains similar to those with histone modifying activity in MLL are found in other proteins implicated in human tumors including acute leukemia, lymphoma, and prostate cancer and probably have a similar function. What is encouraging is that proteins with enzymatic activity are good targets for drug development. These are definitely exciting times for cancer biologists."

This study was supported by grants from the Leukemia and Lymphoma Society, the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, and the Genetics Institute of the Canadian Institute for Health Research.

Co-authors of this study include Tom Milne, Denise Gibbs, and Mary Ellen Martin, of Penn, Scott D. Briggs and C. David Allis of the University of Virginia Health System, and Hugh Brock of the University of British Columbia.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>