Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Knot’ to be undone, researchers discover unusual protein structure


Researchers funded by the National Institute of General Medical Sciences have determined the structure of a protein with a surprising feature in it: a knot. This is the first time a knot has been found in a protein from the most ancient type of single-celled organism, an archaebacterium, and one of only a few times a knot has been seen in any protein structure.

This very unusual protein shape finding is a result from the NIGMS Protein Structure Initiative, a 10-year effort to determine 10,000 unique protein structures using fast, highly automated methods. NIGMS, a component of the U.S. Department of Health and Human Services’ National Institutes of Health, provides $50 million per year to nine PSI research centers. The protein knot structure was solved at one of the PSI centers, the Midwest Center for Structural Genomics, which is directed by Andrzej Joachimiak, Ph.D., of Argonne National Laboratory in suburban Chicago.

The researchers describe the new protein structure in the journal Proteins. Their article will be published online Nov. 27 and in print in early December.

"It’s a surprising and different structure," said NIGMS’ John Norvell, Ph.D., director of the Protein Structure Initiative. Protein folding theory previously held that forming a knot was beyond the ability of a protein. Joachimiak suggests that the newly discovered knot may stabilize the amino acid subunits of the protein.

Such discoveries are just what the PSI aims for. "The PSI approach is to solve thousands of unique protein structures," said Norvell. "It’s a discovery-driven effort, a voyage into the unknown. We aren’t sure what we’ll find, but we expect to map a great diversity of protein structures."

"This makes us want to find out why nature goes to the trouble of creating a knot instead of a more typical fold," said Joachimiak.

One of the main goals of the PSI is to understand all of the possible shapes of proteins in nature. Scientists hope that understanding the full range of protein shapes will shed light on the mysterious process proteins use to fold into a three-dimensional structure from a linear chain of amino acid subunits. Ideally, scientists would like to be able to predict the shape of a protein from the sequence of the gene that codes for it. This ability could be immensely useful in understanding diseases and developing new drugs because a protein’s shape offers big clues to its function and can point to ways of controlling that function.

The "high-throughput" PSI approach is radically different from how scientists have approached protein structure determination in the past. Until recently, scientists focused on solving the structures of proteins with known functions.

The newly discovered knotted protein comes from a microorganism called Methanobacterium thermoautotrophicum. This organism is of interest to industry for its ability to break down waste products and produce methane gas. Scientists know which gene codes for the 268-amino acid protein, but they do not know the protein’s function. They speculate that it binds to RNA, a chemical cousin of the genetic material DNA, and helps process this molecule.

The PSI, currently in its pilot phase, expects to move into production phase by the end of 2005. By the end of the pilot phase, each center will aim to produce 100 to 200 new protein structures per year, adding greatly to the number of known structures. The PSI also expects to dramatically lower the average cost of solving a structure.

The paper describing the new structure was authored by scientists at Argonne National Laboratory and the University of Toronto. The nation’s first national laboratory, Argonne conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. The laboratory is operated by the University of Chicago as part of the U.S. Department of Energy’s national laboratory system.

NIGMS supports basic biomedical research and training nationwide. NIGMS-funded studies lay the foundation for advances in disease diagnosis, treatment and prevention. To learn more, visit the NIGMS Web site at

For information about the protein knot, contact Linda Joy in the NIGMS Office of Communications and Public Liaison at 301-496-7301 to speak with PSI director John Norvell, Ph.D, or Catherine Foster of Argonne National Laboratory at 630-252-5580 to speak with Andrzej Joachimiak, Ph.D.


Zarembinski TI, Kim Y, Peterson K, Christendat D, Kharamsi A, Arrowsmith CH, Edwards AM, Joachimiak A. Deep trefoil knot implicated in RNA binding found in an archaebacterial protein. Proteins 2002; 50: 177-183.

Linda Joy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>