Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Knot’ to be undone, researchers discover unusual protein structure

27.11.2002


Researchers funded by the National Institute of General Medical Sciences have determined the structure of a protein with a surprising feature in it: a knot. This is the first time a knot has been found in a protein from the most ancient type of single-celled organism, an archaebacterium, and one of only a few times a knot has been seen in any protein structure.



This very unusual protein shape finding is a result from the NIGMS Protein Structure Initiative, a 10-year effort to determine 10,000 unique protein structures using fast, highly automated methods. NIGMS, a component of the U.S. Department of Health and Human Services’ National Institutes of Health, provides $50 million per year to nine PSI research centers. The protein knot structure was solved at one of the PSI centers, the Midwest Center for Structural Genomics, which is directed by Andrzej Joachimiak, Ph.D., of Argonne National Laboratory in suburban Chicago.

The researchers describe the new protein structure in the journal Proteins. Their article will be published online Nov. 27 and in print in early December.


"It’s a surprising and different structure," said NIGMS’ John Norvell, Ph.D., director of the Protein Structure Initiative. Protein folding theory previously held that forming a knot was beyond the ability of a protein. Joachimiak suggests that the newly discovered knot may stabilize the amino acid subunits of the protein.

Such discoveries are just what the PSI aims for. "The PSI approach is to solve thousands of unique protein structures," said Norvell. "It’s a discovery-driven effort, a voyage into the unknown. We aren’t sure what we’ll find, but we expect to map a great diversity of protein structures."

"This makes us want to find out why nature goes to the trouble of creating a knot instead of a more typical fold," said Joachimiak.

One of the main goals of the PSI is to understand all of the possible shapes of proteins in nature. Scientists hope that understanding the full range of protein shapes will shed light on the mysterious process proteins use to fold into a three-dimensional structure from a linear chain of amino acid subunits. Ideally, scientists would like to be able to predict the shape of a protein from the sequence of the gene that codes for it. This ability could be immensely useful in understanding diseases and developing new drugs because a protein’s shape offers big clues to its function and can point to ways of controlling that function.

The "high-throughput" PSI approach is radically different from how scientists have approached protein structure determination in the past. Until recently, scientists focused on solving the structures of proteins with known functions.

The newly discovered knotted protein comes from a microorganism called Methanobacterium thermoautotrophicum. This organism is of interest to industry for its ability to break down waste products and produce methane gas. Scientists know which gene codes for the 268-amino acid protein, but they do not know the protein’s function. They speculate that it binds to RNA, a chemical cousin of the genetic material DNA, and helps process this molecule.

The PSI, currently in its pilot phase, expects to move into production phase by the end of 2005. By the end of the pilot phase, each center will aim to produce 100 to 200 new protein structures per year, adding greatly to the number of known structures. The PSI also expects to dramatically lower the average cost of solving a structure.

The paper describing the new structure was authored by scientists at Argonne National Laboratory and the University of Toronto. The nation’s first national laboratory, Argonne conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. The laboratory is operated by the University of Chicago as part of the U.S. Department of Energy’s national laboratory system.


NIGMS supports basic biomedical research and training nationwide. NIGMS-funded studies lay the foundation for advances in disease diagnosis, treatment and prevention. To learn more, visit the NIGMS Web site at www.nigms.nih.gov.

For information about the protein knot, contact Linda Joy in the NIGMS Office of Communications and Public Liaison at 301-496-7301 to speak with PSI director John Norvell, Ph.D, or Catherine Foster of Argonne National Laboratory at 630-252-5580 to speak with Andrzej Joachimiak, Ph.D.

REFERENCE

Zarembinski TI, Kim Y, Peterson K, Christendat D, Kharamsi A, Arrowsmith CH, Edwards AM, Joachimiak A. Deep trefoil knot implicated in RNA binding found in an archaebacterial protein. Proteins 2002; 50: 177-183.


Linda Joy | EurekAlert!
Further information:
http://www.nih.gov/nigms

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>