Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To See or Not to See

14.01.2010
Weizmann Institute scientists find a burst of neural activity at the transition between not seeing and seeing, revealing a clear threshold that must be crossed for perception to occur.

How do the visual images we experience, which have no tangible existence, arise out of physical processes in the brain? New research at the Weizmann Institute of Science provided evidence, for the first time, that an 'ignition' of intense neural activity underlies the experience of seeing.

In research recently published in the journal Neuron, Prof. Rafael Malach and research student Lior Fisch of the Weizmann Institute's Neurobiology Department worked with a neurosurgeon, Dr. Itzhak Fried of Tel Aviv Sourasky Medical Center, a distinguished team of medical doctors from the Center and Weizmann Institute students. They asked a group of epileptic patients who had had electrodes clinically implanted into their brains in preparation for surgery to volunteer for some perceptual awareness tasks. The subjects looked at a computer screen, which briefly presented a 'target' image - a face, house, or man-made object.

This image was followed by a 'mask' - a meaningless picture for distraction - at different time intervals after the target image had been presented. This allowed the experimenter to control the visibility of the images - the patients sometimes recognized the targets and sometimes failed to do so. By comparing the electrode recordings to the patients' reports of whether they had correctly recognized the image or not, the scientists were able to pinpoint when, where and what was happening in the brain as transitions in perceptual awareness took place.

Malach: 'We found that there was a rapid burst of neural activity occurring in the high-order visual centers of the brain - centers that are sensitive to entire images of objects, such as faces - whenever patients had correctly recognized the target image.' The scientists also found that the transition from not seeing to seeing happens abruptly. Fisch: 'When the mask was presented too soon after the target image, it 'killed' the visual input signals, resulting in the patients being unable to recognize the object. The patients suddenly became consciously aware of the target image at a clear threshold, suggesting that the brain needs a specific amount of time to process the input signals in order for conscious perceptual awareness to be 'ignited.''

This study is the first of its kind to uncover strong evidence linking 'ignition' of bursts of neural activity to perceptual awareness in humans. More questions remain: Is this the sole mechanism involved in the transition to perceptual awareness? To what extent is it a local phenomenon? By answering such questions, we might begin bridging the mysterious gap between mind and the brain.

Prof. Rafael Malach's research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Carl and Micaela Einhorn-Dominic Brain Research Institute; the S. and J. Lurje Memorial Foundation; the Benjamin and Seema Pulier Charitable Foundation, Inc; Vera Benedek, Israel; and Mary Helen Rowen, New York, NY. Prof. Malach is the incumbent of the Barbara and Morris Levinson Professorial Chair in Brain Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://wis-wander.weizmann.ac.il

Further reports about: Brain Brain Research Science TV neural activity

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>