Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-invasive imaging technique detects plaques beginning to form in vessels

20.11.2002


A new imaging method successfully identifies miniscule, young blood vessels that form during the development of plaques, according to a study in rabbits led by Washington University School of Medicine in St. Louis. These plaques are akin to atherosclerosis in humans, the primary cause of heart attack and stroke.



"We’ve developed a way to take non-invasive images of very early plaques, before they’re detectable by any other means," says Samuel A. Wickline, M.D., professor of medicine and biomedical engineering and one of the study’s senior authors. "This same technology, we think, will allow us to detect very early cancers and other inflammatory events as well."

Patrick M. Winter, Ph.D., research instructor of medicine and first author of the study, presented the team’s results Nov. 19 during the Russell Ross Memorial Lecture and New Frontiers in Atherosclerosis at the American Heart Association’s Scientific Sessions 2002 in Chicago. Gregory M. Lanza, M.D., Ph.D., assistant professor of medicine and biomedical engineering, is co-senior author.


Wickline also presented an overview of molecular imaging and nanotechnology at the Molecular Basis for Cardiac Imaging session.

Atherosclerosis – the progressive hardening of arteries – results from the accumulation of plaques in key blood vessels. In order for plaques to form, a crowd of smaller vessels, called capillaries, must develop around the diseased site.

In this study, the team used a relatively new imaging method – developed primarily at Washington University – to label growing capillaries, thereby identifying locations where plaques are about to form. They loaded an extremely small particle roughly 200 nanometers long, called a nanoparticle, with about 80,000 atoms of gadolinium, which shows up as a bright spot on a magnetic resonance image (MRI). Other carriers for gadolinium hold only a few such atoms at a time, and therefore result in less bright images.

In order to ensure that gadolinium highlighted only new capillaries, the team also packed the nanoparticle with molecules that specifically detect a protein called avb3, which is abundant in rapidly growing capillaries. In so doing, the nanoparticles mainly latched onto cells that contain avb3.

"You can load these nanoparticles with whatever you want, like a Mr. Potato Head," Wickline explains. "The targeting agent allows us to select where the particle goes, and then we can either add an imaging agent, like gadolinium, or a drug, like plaque stabilizing medications or anticancer agents."

The team injected nanoparticles loaded with avb3 detectors and gadolinium into 13 rabbits. Four of the rabbits had been fed normal diets and nine had been fed high-cholesterol diets for about 80 days. They then took MRI scans of the abdominal aorta – the largest artery in the body – for two hours after injection. The cholesterol-fed rabbits injected with targeted nanoparticles had gadolinium signals in the abdominal aorta more than twice as bright as the other rabbits.

Post-mortem examination confirmed that the cholesterol-fed animals were in fact developing dangerous capillaries around the aorta, in contrast to the control diet rabbits.

"These preliminary results suggest that we can manipulate nanoparticles to image plaques as they are just beginning to form," says Wickline. "Previous research of ours also suggests that this technique can distinguish between patients with stable plaques from those whose plaques are about to rupture and thereby cause a heart attack or stroke."

Because tumors also require new populations of capillaries, the team believes this technique will enable them to detect very early cancers at the beginning stages of tumor development.


The technology used in this study has been licensed to KEREOS Inc., which is devoted to molecular imaging and targeted therapeutics. Gregory M. Lanza, M.D., Ph.D., and Samuel A. Wickline, M.D., are co-founders of KEREOS and both are board members and equity holders.

Winter PM, Caruthers SD, Schmeider A, Harris TD, Chinen L, Williams T, Watkins MP, Allen JS, Wickline SA, Lanza GM. Molecular imaging of angiogenesis in atherosclerotic rabbits by MRI at 1.5T with avb3 targeted nanoparticles, American Heart Association, Nov. 19, 2002.

Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapeutics. American Heart Association, Nov. 17, 2002.

Funding from the National Heart, Lung and Blood Institute, the National Cancer Institute and Philips Medical Systems supported this research. Bristol-Myers Squibb Medical Imaging provided materials for the study.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>