Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-invasive imaging technique detects plaques beginning to form in vessels

20.11.2002


A new imaging method successfully identifies miniscule, young blood vessels that form during the development of plaques, according to a study in rabbits led by Washington University School of Medicine in St. Louis. These plaques are akin to atherosclerosis in humans, the primary cause of heart attack and stroke.



"We’ve developed a way to take non-invasive images of very early plaques, before they’re detectable by any other means," says Samuel A. Wickline, M.D., professor of medicine and biomedical engineering and one of the study’s senior authors. "This same technology, we think, will allow us to detect very early cancers and other inflammatory events as well."

Patrick M. Winter, Ph.D., research instructor of medicine and first author of the study, presented the team’s results Nov. 19 during the Russell Ross Memorial Lecture and New Frontiers in Atherosclerosis at the American Heart Association’s Scientific Sessions 2002 in Chicago. Gregory M. Lanza, M.D., Ph.D., assistant professor of medicine and biomedical engineering, is co-senior author.


Wickline also presented an overview of molecular imaging and nanotechnology at the Molecular Basis for Cardiac Imaging session.

Atherosclerosis – the progressive hardening of arteries – results from the accumulation of plaques in key blood vessels. In order for plaques to form, a crowd of smaller vessels, called capillaries, must develop around the diseased site.

In this study, the team used a relatively new imaging method – developed primarily at Washington University – to label growing capillaries, thereby identifying locations where plaques are about to form. They loaded an extremely small particle roughly 200 nanometers long, called a nanoparticle, with about 80,000 atoms of gadolinium, which shows up as a bright spot on a magnetic resonance image (MRI). Other carriers for gadolinium hold only a few such atoms at a time, and therefore result in less bright images.

In order to ensure that gadolinium highlighted only new capillaries, the team also packed the nanoparticle with molecules that specifically detect a protein called avb3, which is abundant in rapidly growing capillaries. In so doing, the nanoparticles mainly latched onto cells that contain avb3.

"You can load these nanoparticles with whatever you want, like a Mr. Potato Head," Wickline explains. "The targeting agent allows us to select where the particle goes, and then we can either add an imaging agent, like gadolinium, or a drug, like plaque stabilizing medications or anticancer agents."

The team injected nanoparticles loaded with avb3 detectors and gadolinium into 13 rabbits. Four of the rabbits had been fed normal diets and nine had been fed high-cholesterol diets for about 80 days. They then took MRI scans of the abdominal aorta – the largest artery in the body – for two hours after injection. The cholesterol-fed rabbits injected with targeted nanoparticles had gadolinium signals in the abdominal aorta more than twice as bright as the other rabbits.

Post-mortem examination confirmed that the cholesterol-fed animals were in fact developing dangerous capillaries around the aorta, in contrast to the control diet rabbits.

"These preliminary results suggest that we can manipulate nanoparticles to image plaques as they are just beginning to form," says Wickline. "Previous research of ours also suggests that this technique can distinguish between patients with stable plaques from those whose plaques are about to rupture and thereby cause a heart attack or stroke."

Because tumors also require new populations of capillaries, the team believes this technique will enable them to detect very early cancers at the beginning stages of tumor development.


The technology used in this study has been licensed to KEREOS Inc., which is devoted to molecular imaging and targeted therapeutics. Gregory M. Lanza, M.D., Ph.D., and Samuel A. Wickline, M.D., are co-founders of KEREOS and both are board members and equity holders.

Winter PM, Caruthers SD, Schmeider A, Harris TD, Chinen L, Williams T, Watkins MP, Allen JS, Wickline SA, Lanza GM. Molecular imaging of angiogenesis in atherosclerotic rabbits by MRI at 1.5T with avb3 targeted nanoparticles, American Heart Association, Nov. 19, 2002.

Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapeutics. American Heart Association, Nov. 17, 2002.

Funding from the National Heart, Lung and Blood Institute, the National Cancer Institute and Philips Medical Systems supported this research. Bristol-Myers Squibb Medical Imaging provided materials for the study.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>