Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Non-invasive imaging technique detects plaques beginning to form in vessels


A new imaging method successfully identifies miniscule, young blood vessels that form during the development of plaques, according to a study in rabbits led by Washington University School of Medicine in St. Louis. These plaques are akin to atherosclerosis in humans, the primary cause of heart attack and stroke.

"We’ve developed a way to take non-invasive images of very early plaques, before they’re detectable by any other means," says Samuel A. Wickline, M.D., professor of medicine and biomedical engineering and one of the study’s senior authors. "This same technology, we think, will allow us to detect very early cancers and other inflammatory events as well."

Patrick M. Winter, Ph.D., research instructor of medicine and first author of the study, presented the team’s results Nov. 19 during the Russell Ross Memorial Lecture and New Frontiers in Atherosclerosis at the American Heart Association’s Scientific Sessions 2002 in Chicago. Gregory M. Lanza, M.D., Ph.D., assistant professor of medicine and biomedical engineering, is co-senior author.

Wickline also presented an overview of molecular imaging and nanotechnology at the Molecular Basis for Cardiac Imaging session.

Atherosclerosis – the progressive hardening of arteries – results from the accumulation of plaques in key blood vessels. In order for plaques to form, a crowd of smaller vessels, called capillaries, must develop around the diseased site.

In this study, the team used a relatively new imaging method – developed primarily at Washington University – to label growing capillaries, thereby identifying locations where plaques are about to form. They loaded an extremely small particle roughly 200 nanometers long, called a nanoparticle, with about 80,000 atoms of gadolinium, which shows up as a bright spot on a magnetic resonance image (MRI). Other carriers for gadolinium hold only a few such atoms at a time, and therefore result in less bright images.

In order to ensure that gadolinium highlighted only new capillaries, the team also packed the nanoparticle with molecules that specifically detect a protein called avb3, which is abundant in rapidly growing capillaries. In so doing, the nanoparticles mainly latched onto cells that contain avb3.

"You can load these nanoparticles with whatever you want, like a Mr. Potato Head," Wickline explains. "The targeting agent allows us to select where the particle goes, and then we can either add an imaging agent, like gadolinium, or a drug, like plaque stabilizing medications or anticancer agents."

The team injected nanoparticles loaded with avb3 detectors and gadolinium into 13 rabbits. Four of the rabbits had been fed normal diets and nine had been fed high-cholesterol diets for about 80 days. They then took MRI scans of the abdominal aorta – the largest artery in the body – for two hours after injection. The cholesterol-fed rabbits injected with targeted nanoparticles had gadolinium signals in the abdominal aorta more than twice as bright as the other rabbits.

Post-mortem examination confirmed that the cholesterol-fed animals were in fact developing dangerous capillaries around the aorta, in contrast to the control diet rabbits.

"These preliminary results suggest that we can manipulate nanoparticles to image plaques as they are just beginning to form," says Wickline. "Previous research of ours also suggests that this technique can distinguish between patients with stable plaques from those whose plaques are about to rupture and thereby cause a heart attack or stroke."

Because tumors also require new populations of capillaries, the team believes this technique will enable them to detect very early cancers at the beginning stages of tumor development.

The technology used in this study has been licensed to KEREOS Inc., which is devoted to molecular imaging and targeted therapeutics. Gregory M. Lanza, M.D., Ph.D., and Samuel A. Wickline, M.D., are co-founders of KEREOS and both are board members and equity holders.

Winter PM, Caruthers SD, Schmeider A, Harris TD, Chinen L, Williams T, Watkins MP, Allen JS, Wickline SA, Lanza GM. Molecular imaging of angiogenesis in atherosclerotic rabbits by MRI at 1.5T with avb3 targeted nanoparticles, American Heart Association, Nov. 19, 2002.

Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapeutics. American Heart Association, Nov. 17, 2002.

Funding from the National Heart, Lung and Blood Institute, the National Cancer Institute and Philips Medical Systems supported this research. Bristol-Myers Squibb Medical Imaging provided materials for the study.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>