Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New HIV vaccine holds promise of global effectiveness

14.11.2002


Clinical tests began today of a novel vaccine directed at the three most globally important HIV subtypes, or clades. Developed by scientists at the Dale and Betty Bumpers Vaccine Research Center (VRC), part of the National Institute of Allergy and Infectious Diseases (NIAID), the vaccine incorporates HIV genetic material from clades A, B and C, which cause about 90 percent of all HIV infections around the world.



"This is the first multigene, multiclade HIV vaccine to enter human trials," notes NIAID Director Anthony S. Fauci, M.D. "It marks an important milestone in our search for a single vaccine that targets U.S. subtypes of HIV as well as clades causing the global epidemic," he adds.

"This trial begins a process that we hope will culminate in a globally effective HIV vaccine," says Gary Nabel, M.D., Ph.D., who heads the VRC. "The first step is to develop a multiclade vaccine. If our candidate elicits an effective immune response and proves safe in clinical testing, we will include additional components in subsequent trials in hopes of boosting this response. Ultimately, we aim to build a potent vaccine designed to prevent HIV infection."


The trial vaccine is a DNA vaccine, a kind shown to be very safe in previous clinical trials. It incorporates parts of four HIV genes. Three of these vaccine components are modified versions of HIV genes called gag, pol and nef taken from clade B, the subtype that predominates in Europe and North America. The fourth vaccine component is derived from an HIV gene named env.

The env gene codes for a protein on the outer coat of the virus that allows it to recognize and attach to human cells. VRC scientists are the first to combine modified env from clades A and C, which are the most common in Africa, as well as from clade B. A single vaccine combining multiple env components from different HIV subtypes could, in theory, be effective in many places in the world.

While these gene fragments can stimulate an immune response, they cannot reconstitute themselves into an infectious virus. A person cannot become infected with HIV from this vaccine, Dr. Nabel emphasizes.

Efforts to develop a broadly effective vaccine against HIV are complicated not only by the many clades, but also by the virus’ ability to elude immune system defenses through rapid mutation. "Any HIV vaccine must hit a constantly moving target," says Dr. Nabel. "Essentially, we are trying to enlarge that target through a multiclade vaccine." Researchers do not yet know if a multiclade vaccine will be more effective than one based on a single clade. "That is one question we hope our vaccine trials will eventually answer," notes Dr. Nabel.

The public plays a critical role in this ongoing research, says Barney Graham, M.D., Ph.D., chief of the VRC’s clinical trials core and lead investigator in the multiclade vaccine trial. "We want the community to understand and support the process of vaccine development so that together we can attain the goal of stopping or slowing the AIDS pandemic," he says. "Although thousands have already volunteered to take part in HIV vaccine trials, many more are needed. The importance of community participation cannot be overemphasized," says Dr. Graham.

The first phase of the trial, which is being conducted at the National Institutes of Health in Bethesda, MD, is meant to determine the vaccine’s safety and will enroll 50 healthy, HIV-negative volunteers. Following an extensive informed consent process, volunteers, who must be between 18 and 40 years old to participate, will be vaccinated with either the test vaccine or an inactive saline solution in a series of increasing doses. Neither the participants nor the researchers will know which group a participant is in. During the yearlong trial, scientists will assess the vaccine’s safety and note if it induces any immune response in the vaccinees. Expanded tests conducted through NIAID’s HIV Vaccine Trials Network are planned for several domestic sites as well as sites in Haiti and South Africa.

Anne Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov/
http://www.clinicaltrials.gov
http://www.niaid.nih.gov/vrc

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>