Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New HIV vaccine holds promise of global effectiveness

14.11.2002


Clinical tests began today of a novel vaccine directed at the three most globally important HIV subtypes, or clades. Developed by scientists at the Dale and Betty Bumpers Vaccine Research Center (VRC), part of the National Institute of Allergy and Infectious Diseases (NIAID), the vaccine incorporates HIV genetic material from clades A, B and C, which cause about 90 percent of all HIV infections around the world.



"This is the first multigene, multiclade HIV vaccine to enter human trials," notes NIAID Director Anthony S. Fauci, M.D. "It marks an important milestone in our search for a single vaccine that targets U.S. subtypes of HIV as well as clades causing the global epidemic," he adds.

"This trial begins a process that we hope will culminate in a globally effective HIV vaccine," says Gary Nabel, M.D., Ph.D., who heads the VRC. "The first step is to develop a multiclade vaccine. If our candidate elicits an effective immune response and proves safe in clinical testing, we will include additional components in subsequent trials in hopes of boosting this response. Ultimately, we aim to build a potent vaccine designed to prevent HIV infection."


The trial vaccine is a DNA vaccine, a kind shown to be very safe in previous clinical trials. It incorporates parts of four HIV genes. Three of these vaccine components are modified versions of HIV genes called gag, pol and nef taken from clade B, the subtype that predominates in Europe and North America. The fourth vaccine component is derived from an HIV gene named env.

The env gene codes for a protein on the outer coat of the virus that allows it to recognize and attach to human cells. VRC scientists are the first to combine modified env from clades A and C, which are the most common in Africa, as well as from clade B. A single vaccine combining multiple env components from different HIV subtypes could, in theory, be effective in many places in the world.

While these gene fragments can stimulate an immune response, they cannot reconstitute themselves into an infectious virus. A person cannot become infected with HIV from this vaccine, Dr. Nabel emphasizes.

Efforts to develop a broadly effective vaccine against HIV are complicated not only by the many clades, but also by the virus’ ability to elude immune system defenses through rapid mutation. "Any HIV vaccine must hit a constantly moving target," says Dr. Nabel. "Essentially, we are trying to enlarge that target through a multiclade vaccine." Researchers do not yet know if a multiclade vaccine will be more effective than one based on a single clade. "That is one question we hope our vaccine trials will eventually answer," notes Dr. Nabel.

The public plays a critical role in this ongoing research, says Barney Graham, M.D., Ph.D., chief of the VRC’s clinical trials core and lead investigator in the multiclade vaccine trial. "We want the community to understand and support the process of vaccine development so that together we can attain the goal of stopping or slowing the AIDS pandemic," he says. "Although thousands have already volunteered to take part in HIV vaccine trials, many more are needed. The importance of community participation cannot be overemphasized," says Dr. Graham.

The first phase of the trial, which is being conducted at the National Institutes of Health in Bethesda, MD, is meant to determine the vaccine’s safety and will enroll 50 healthy, HIV-negative volunteers. Following an extensive informed consent process, volunteers, who must be between 18 and 40 years old to participate, will be vaccinated with either the test vaccine or an inactive saline solution in a series of increasing doses. Neither the participants nor the researchers will know which group a participant is in. During the yearlong trial, scientists will assess the vaccine’s safety and note if it induces any immune response in the vaccinees. Expanded tests conducted through NIAID’s HIV Vaccine Trials Network are planned for several domestic sites as well as sites in Haiti and South Africa.

Anne Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov/
http://www.clinicaltrials.gov
http://www.niaid.nih.gov/vrc

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>