Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A pathway towards cures for Parkinson’s and cancer

06.11.2002


Researchers studying the Hedgehog signaling pathway have identified small molecules that could form the foundations of exciting new treatments for Parkinson’s disease and certain cancers.



New research published in Journal of Biology - the open access journal for exceptional research - has identified small molecules that are able to stimulate or block the Hedgehog signalling pathway, which is essential to the development, maintenance and repair of cells in the human body. The potential of these molecules to be used as drugs to treat both degenerative diseases and cancer is exciting as their small size may allow these molecules to enter all parts of the body and cross the blood brain barrier, eliminating the need for injections of therapeutics directly into the target site.

The Hedgehog signaling pathway is crucial to the development of healthy animals as well as the maintenance and repair of adult cells. Hedgehog genes were first identified in the fruitfly, and were so called because fly embryos with a defect in this gene were covered in bristles. The central role of the Hedgehog signalling pathway in the regulation of the growth and division of specific types of cells makes it of great interest to researchers investigating diseases like Parkinson’s that are characterised by a lack of particular cells as the central nervous system degenerates. Finding drugs that can stimulate the Hedgehog signaling pathway and lead to the production of new cells could potentially cure this disease. It is also hoped that by developing drugs that block the Hedgehog signalling pathway researchers will be able to induce the regression of tumours in patients with certain cancers that depend on this pathway (specifically, basal cell carcinoma and medulloblastoma).


Recent research has shown the Hedgehog protein can itself reduce the behavioural impairments and neuronal loss that occur in animal models of the Parkinson’s disease suggesting that manipulating this pathway may well deliver new treatment. One major drawback of using the Hedgehog protein to manipulate the signaling pathway is that, because of it large size, it has to be administered by direct injection into the brain.

In the Journal of Biology article, a team of researchers led by Jeffrey A Porter of the biotechnology company, Curis Inc, of Cambridge Massachusetts, and including colleagues from Columbia University in New York, report their screen of around 140,000 synthetic molecules for the ability to stimulate or inhibit the Hedgehog signalling pathway. One of the molecules was studied further by creating around 300 chemical derivatives. Using this method the researchers were able to identify a range of active molecules that could have exciting therapeutic benefits.

Porter and colleagues then went on to characterise the small synthetic molecules to find out how they worked in living organisms, hopeful that this would give them further understanding of the Hedgehog signalling pathway. They found their small molecules were interacting with a poorly understood protein that is found on the surface of developing cells. This protein, called Smoothened, helps cells respond to the Hedgehog protein.

The interaction of the Smoothened protein with the synthetic small molecules suggests that the Hedgehog signalling pathway may involve similar small molecules to those synthesised in this study.

The authors conclude, "As a drug a Hedgehog agonist [one of the new molecules they have identified] would represent an attractive alternative to an expensive Hedgehog protein therapeutic."


###
This article will be published online and made available free of charge on Wednesday November 6, in line with the publisher’s policy of providing immediate open access to original research: http://jbiol.com/1/2/10

The second issue of Journal of Biology will also include minireview and research news articles that will also be made freely available from http://jbiol.com, and which will be added to the press site ahead of publication.

Journal of Biology (http://jbiol.com) is a new international journal, published by BioMed Central, which provides immediate open access to research articles of exceptional interest. It will only publish research articles of the highest standard, similar to those published by Nature, Science or Cell. While these journals restrict access to only those who pay for a subscription, all research articles published in Journal of Biology will be permanently available free of charge and without restrictions, ensuring the widest possible dissemination of the work.

Contact details:

Journal of Biology
Editor Dr Theodora Bloom
E-mail editorial@jbiol.com
Telephone 44-207-323-0323
Facsimile 44-207-631-9961

Author Dr Jeffery A Porter, Curis, Inc.,
E-mail: jporter@curis.com
Telephone 617-503-6568
Facsimile 617-503-6501


Journal of Biology
Editor in Chief: Martin Raff
Publisher: BioMed Central
Format: online and print

Gordon Fletcher | EurekAlert!
Further information:
http://jbiol.com
http://jbiol.com/press/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>