Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A pathway towards cures for Parkinson’s and cancer

06.11.2002


Researchers studying the Hedgehog signaling pathway have identified small molecules that could form the foundations of exciting new treatments for Parkinson’s disease and certain cancers.



New research published in Journal of Biology - the open access journal for exceptional research - has identified small molecules that are able to stimulate or block the Hedgehog signalling pathway, which is essential to the development, maintenance and repair of cells in the human body. The potential of these molecules to be used as drugs to treat both degenerative diseases and cancer is exciting as their small size may allow these molecules to enter all parts of the body and cross the blood brain barrier, eliminating the need for injections of therapeutics directly into the target site.

The Hedgehog signaling pathway is crucial to the development of healthy animals as well as the maintenance and repair of adult cells. Hedgehog genes were first identified in the fruitfly, and were so called because fly embryos with a defect in this gene were covered in bristles. The central role of the Hedgehog signalling pathway in the regulation of the growth and division of specific types of cells makes it of great interest to researchers investigating diseases like Parkinson’s that are characterised by a lack of particular cells as the central nervous system degenerates. Finding drugs that can stimulate the Hedgehog signaling pathway and lead to the production of new cells could potentially cure this disease. It is also hoped that by developing drugs that block the Hedgehog signalling pathway researchers will be able to induce the regression of tumours in patients with certain cancers that depend on this pathway (specifically, basal cell carcinoma and medulloblastoma).


Recent research has shown the Hedgehog protein can itself reduce the behavioural impairments and neuronal loss that occur in animal models of the Parkinson’s disease suggesting that manipulating this pathway may well deliver new treatment. One major drawback of using the Hedgehog protein to manipulate the signaling pathway is that, because of it large size, it has to be administered by direct injection into the brain.

In the Journal of Biology article, a team of researchers led by Jeffrey A Porter of the biotechnology company, Curis Inc, of Cambridge Massachusetts, and including colleagues from Columbia University in New York, report their screen of around 140,000 synthetic molecules for the ability to stimulate or inhibit the Hedgehog signalling pathway. One of the molecules was studied further by creating around 300 chemical derivatives. Using this method the researchers were able to identify a range of active molecules that could have exciting therapeutic benefits.

Porter and colleagues then went on to characterise the small synthetic molecules to find out how they worked in living organisms, hopeful that this would give them further understanding of the Hedgehog signalling pathway. They found their small molecules were interacting with a poorly understood protein that is found on the surface of developing cells. This protein, called Smoothened, helps cells respond to the Hedgehog protein.

The interaction of the Smoothened protein with the synthetic small molecules suggests that the Hedgehog signalling pathway may involve similar small molecules to those synthesised in this study.

The authors conclude, "As a drug a Hedgehog agonist [one of the new molecules they have identified] would represent an attractive alternative to an expensive Hedgehog protein therapeutic."


###
This article will be published online and made available free of charge on Wednesday November 6, in line with the publisher’s policy of providing immediate open access to original research: http://jbiol.com/1/2/10

The second issue of Journal of Biology will also include minireview and research news articles that will also be made freely available from http://jbiol.com, and which will be added to the press site ahead of publication.

Journal of Biology (http://jbiol.com) is a new international journal, published by BioMed Central, which provides immediate open access to research articles of exceptional interest. It will only publish research articles of the highest standard, similar to those published by Nature, Science or Cell. While these journals restrict access to only those who pay for a subscription, all research articles published in Journal of Biology will be permanently available free of charge and without restrictions, ensuring the widest possible dissemination of the work.

Contact details:

Journal of Biology
Editor Dr Theodora Bloom
E-mail editorial@jbiol.com
Telephone 44-207-323-0323
Facsimile 44-207-631-9961

Author Dr Jeffery A Porter, Curis, Inc.,
E-mail: jporter@curis.com
Telephone 617-503-6568
Facsimile 617-503-6501


Journal of Biology
Editor in Chief: Martin Raff
Publisher: BioMed Central
Format: online and print

Gordon Fletcher | EurekAlert!
Further information:
http://jbiol.com
http://jbiol.com/press/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>