Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A pathway towards cures for Parkinson’s and cancer

06.11.2002


Researchers studying the Hedgehog signaling pathway have identified small molecules that could form the foundations of exciting new treatments for Parkinson’s disease and certain cancers.



New research published in Journal of Biology - the open access journal for exceptional research - has identified small molecules that are able to stimulate or block the Hedgehog signalling pathway, which is essential to the development, maintenance and repair of cells in the human body. The potential of these molecules to be used as drugs to treat both degenerative diseases and cancer is exciting as their small size may allow these molecules to enter all parts of the body and cross the blood brain barrier, eliminating the need for injections of therapeutics directly into the target site.

The Hedgehog signaling pathway is crucial to the development of healthy animals as well as the maintenance and repair of adult cells. Hedgehog genes were first identified in the fruitfly, and were so called because fly embryos with a defect in this gene were covered in bristles. The central role of the Hedgehog signalling pathway in the regulation of the growth and division of specific types of cells makes it of great interest to researchers investigating diseases like Parkinson’s that are characterised by a lack of particular cells as the central nervous system degenerates. Finding drugs that can stimulate the Hedgehog signaling pathway and lead to the production of new cells could potentially cure this disease. It is also hoped that by developing drugs that block the Hedgehog signalling pathway researchers will be able to induce the regression of tumours in patients with certain cancers that depend on this pathway (specifically, basal cell carcinoma and medulloblastoma).


Recent research has shown the Hedgehog protein can itself reduce the behavioural impairments and neuronal loss that occur in animal models of the Parkinson’s disease suggesting that manipulating this pathway may well deliver new treatment. One major drawback of using the Hedgehog protein to manipulate the signaling pathway is that, because of it large size, it has to be administered by direct injection into the brain.

In the Journal of Biology article, a team of researchers led by Jeffrey A Porter of the biotechnology company, Curis Inc, of Cambridge Massachusetts, and including colleagues from Columbia University in New York, report their screen of around 140,000 synthetic molecules for the ability to stimulate or inhibit the Hedgehog signalling pathway. One of the molecules was studied further by creating around 300 chemical derivatives. Using this method the researchers were able to identify a range of active molecules that could have exciting therapeutic benefits.

Porter and colleagues then went on to characterise the small synthetic molecules to find out how they worked in living organisms, hopeful that this would give them further understanding of the Hedgehog signalling pathway. They found their small molecules were interacting with a poorly understood protein that is found on the surface of developing cells. This protein, called Smoothened, helps cells respond to the Hedgehog protein.

The interaction of the Smoothened protein with the synthetic small molecules suggests that the Hedgehog signalling pathway may involve similar small molecules to those synthesised in this study.

The authors conclude, "As a drug a Hedgehog agonist [one of the new molecules they have identified] would represent an attractive alternative to an expensive Hedgehog protein therapeutic."


###
This article will be published online and made available free of charge on Wednesday November 6, in line with the publisher’s policy of providing immediate open access to original research: http://jbiol.com/1/2/10

The second issue of Journal of Biology will also include minireview and research news articles that will also be made freely available from http://jbiol.com, and which will be added to the press site ahead of publication.

Journal of Biology (http://jbiol.com) is a new international journal, published by BioMed Central, which provides immediate open access to research articles of exceptional interest. It will only publish research articles of the highest standard, similar to those published by Nature, Science or Cell. While these journals restrict access to only those who pay for a subscription, all research articles published in Journal of Biology will be permanently available free of charge and without restrictions, ensuring the widest possible dissemination of the work.

Contact details:

Journal of Biology
Editor Dr Theodora Bloom
E-mail editorial@jbiol.com
Telephone 44-207-323-0323
Facsimile 44-207-631-9961

Author Dr Jeffery A Porter, Curis, Inc.,
E-mail: jporter@curis.com
Telephone 617-503-6568
Facsimile 617-503-6501


Journal of Biology
Editor in Chief: Martin Raff
Publisher: BioMed Central
Format: online and print

Gordon Fletcher | EurekAlert!
Further information:
http://jbiol.com
http://jbiol.com/press/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>