Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mild aerobic exercise no protection from osteoporosis

31.10.2002


Muscle strength, abdominal fat linked to bone mineral density



While day-to-day physical activities such as walking, housework and shopping may be good for your heart, they don’t do much for your bones, according to a Johns Hopkins study.
The new report, published in the November issue of the Journal of Internal Medicine, found that neither light-intensity activities nor aerobic fitness level contributed to bone health, contrasting previous studies suggesting that aerobics could play a role. Having a few extra pounds, however, was a help. Among a group of older adults studied, those with greater muscle strength and higher body fat, especially in the abdomen, had higher bone mineral densities.

"Carrying extra body weight increases the forces on bone, strengthening it, though the largest forces come from more vigorous exercise rather than routine low-intensity physical activity," says lead author Kerry J. Stewart, Ed.D., director of clinical exercise physiology at Hopkins. "In our study of typical older people, who unfortunately do not participate in regular vigorous exercise, daily activities and low-intensity exercise like walking appeared to be relatively ineffective for preventing aging-related bone loss."



Stewart does not advocate gaining weight to fight osteoporosis.

"Paradoxically, a high percentage of abdominal fat seems to increase bone mineral density," he says, "but it also increases the risk of heart disease, high blood pressure and diabetes, and worsens the symptoms of chronic conditions such as knee arthritis. Further research is needed to define methods that will reduce obesity while preserving or enhancing bone health."

Stewart and colleagues studied 84 adults (38 men and 46 women) ages 55 to 75 with higher than normal blood pressure but who were otherwise healthy. They were not exercising regularly, defined as moderate- or high-intensity exercise for 30 minutes a day, three or more times per week.

Researchers used X-rays to measure the participants’ bone mineral density in the total skeleton, lower spine and hip, and magnetic resonance imaging to calculate abdominal fat. They weighed each participant and had each do a treadmill exercise test and a series of weight-training exercises to measure aerobic fitness and muscle strength. In addition, the individuals completed a physical activity questionnaire.

Researchers found that aerobic exercise was not associated with bone mineral density but abdominal fat was. Muscle strength was associated with bone mineral density at some but not all sites.

Thirty percent of the women were taking estrogen and progesterone supplements. While such hormone replacement therapy has been known to positively benefit bone, in this study it contributed only modestly to bone mineral density and only at the lower spine.


The study was supported by the National Institutes of Health and the Johns Hopkins Bayview General Clinical Research Center. Co-authors were J.R. DeRegis; K.L. Turner, A.C. Bacher, J. Sung, P.S. Hees, M. Tayback and P. Ouyang.


Stewart, Kerry J., et al, "Fitness, fatness and activity as predictors of bone mineral density in older persons," Journal of Internal Medicine, Nov. 2002, Vol. 252, No. 5, pp. 1-8.

Karen Blum | EurekAlert!
Further information:
http://www.cardiology.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>