Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model for common type of cancer developed by UCLA scientists

30.10.2002


Scientists at UCLA’s Jonsson Cancer Center have developed the world’s first animal model for mature human B-cell lymphomas, a discovery that may lead to the uncovering of the genetic mutations that cause these types of cancer. Mature B-cell type lymphomas account for about 85 percent of all lymphomas.



The basic science discovery is outlined in the Oct. 29 issue of the peer-reviewed journal Proceedings of the National Academy of Sciences.

"What we can do now is grow cell lines out of this model to determine which cancer-causing companion mutations arise," said Dr. Mike Teitell, a physician and researcher at UCLA’s Jonsson Cancer Center and the lead author of the article, available online at www.pnas.org/. "This model appears to yield a large spectrum of mature B-cell lymphomas."


Teitell, collaborator Randolph Wall, and their research team, scientist Katrina Hoyer and Dr. Samuel French, had previously identified an abnormality in a gene called T-cell leukemia 1 (TCL1) in patients with B-cell lymphomas, especially in those suffering from AIDS.

The researchers wondered what would happen if they developed an animal model with abnormally expressed TCL1 -- would the model develop cancer? Teitell and his team got more than they expected: animals with abnormally regulated TCL1 developed three different types of lymphoma.

"This finding suggested that specific mutations in addition to TCL1 were causing distinct types of B-cell malignancy. It was a very surprising result," Teitell said "Before this, we did not have a model for any of these forms of lymphoma. Since we can now generate all these different types, we are in a position to understand the changes that cause each type. For example, why does one animal with abnormal TCL1 expression develop one type of lymphoma, while a genetically identical animal develops a different type?"

B-cell lymphomas include both Hodgkin’s and non-Hodgkin’s lymphomas. Specifically, the three types of B-cell lymphoma that grew out of Teitell’s animal model were Burkitt-like lymphoma, diffuse large B-cell lymphoma and follicular center cell lymphoma, all of which are classified as non-Hodgkin’s lymphomas.

Now the team wants to know why these three forms arose in the same genetic background. Teitell theorizes that there may be different cell pathways -- or highways that cells use to send signals -- involved in the three different types of lymphoma. If Teitell and his team can identify the pathways, they can attempt to block them with new drugs, Teitell said, akin to hitting the brake on a car or turning off a light switch. The idea is to interrupt the cell signal before it triggers the genetic mutation that causes the cancer to begin to grow.

"I think we may have identified an important mechanism that links certain signaling pathways with the causation of certain cancers, in this case in the immune system but perhaps in other parts of the body as well," Teitell said.

Lymphomas are cancers that start in lymphoid tissue, also called lymphatic tissue. The lymphatic system is important for filtering germs and cancer cells, as well as fluid from the extremities and internal organs. Lymphoid tissue is found in many places throughout the body, including lymph nodes, the thymus, the spleen, the tonsils and adenoids, in the bone marrow, and scattered within other systems, such as the digestive and respiratory systems.

About 60,000 Americans will develop lymphomas, and 26,000 people will die of the disease this year alone, according to the American Cancer Society.

The next step for Teitell and his research team will be to develop molecules that block the action of TCL1, trying to discover what cell pathway or pathways are being used by cells destined to become malignant. They also are working to discover if TCL1 is abnormally expressed in other human cancers.

"I think this has real promise," Teitell said. "This has a chance to go all the way."

Kim Irwin | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>