Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model for common type of cancer developed by UCLA scientists

30.10.2002


Scientists at UCLA’s Jonsson Cancer Center have developed the world’s first animal model for mature human B-cell lymphomas, a discovery that may lead to the uncovering of the genetic mutations that cause these types of cancer. Mature B-cell type lymphomas account for about 85 percent of all lymphomas.



The basic science discovery is outlined in the Oct. 29 issue of the peer-reviewed journal Proceedings of the National Academy of Sciences.

"What we can do now is grow cell lines out of this model to determine which cancer-causing companion mutations arise," said Dr. Mike Teitell, a physician and researcher at UCLA’s Jonsson Cancer Center and the lead author of the article, available online at www.pnas.org/. "This model appears to yield a large spectrum of mature B-cell lymphomas."


Teitell, collaborator Randolph Wall, and their research team, scientist Katrina Hoyer and Dr. Samuel French, had previously identified an abnormality in a gene called T-cell leukemia 1 (TCL1) in patients with B-cell lymphomas, especially in those suffering from AIDS.

The researchers wondered what would happen if they developed an animal model with abnormally expressed TCL1 -- would the model develop cancer? Teitell and his team got more than they expected: animals with abnormally regulated TCL1 developed three different types of lymphoma.

"This finding suggested that specific mutations in addition to TCL1 were causing distinct types of B-cell malignancy. It was a very surprising result," Teitell said "Before this, we did not have a model for any of these forms of lymphoma. Since we can now generate all these different types, we are in a position to understand the changes that cause each type. For example, why does one animal with abnormal TCL1 expression develop one type of lymphoma, while a genetically identical animal develops a different type?"

B-cell lymphomas include both Hodgkin’s and non-Hodgkin’s lymphomas. Specifically, the three types of B-cell lymphoma that grew out of Teitell’s animal model were Burkitt-like lymphoma, diffuse large B-cell lymphoma and follicular center cell lymphoma, all of which are classified as non-Hodgkin’s lymphomas.

Now the team wants to know why these three forms arose in the same genetic background. Teitell theorizes that there may be different cell pathways -- or highways that cells use to send signals -- involved in the three different types of lymphoma. If Teitell and his team can identify the pathways, they can attempt to block them with new drugs, Teitell said, akin to hitting the brake on a car or turning off a light switch. The idea is to interrupt the cell signal before it triggers the genetic mutation that causes the cancer to begin to grow.

"I think we may have identified an important mechanism that links certain signaling pathways with the causation of certain cancers, in this case in the immune system but perhaps in other parts of the body as well," Teitell said.

Lymphomas are cancers that start in lymphoid tissue, also called lymphatic tissue. The lymphatic system is important for filtering germs and cancer cells, as well as fluid from the extremities and internal organs. Lymphoid tissue is found in many places throughout the body, including lymph nodes, the thymus, the spleen, the tonsils and adenoids, in the bone marrow, and scattered within other systems, such as the digestive and respiratory systems.

About 60,000 Americans will develop lymphomas, and 26,000 people will die of the disease this year alone, according to the American Cancer Society.

The next step for Teitell and his research team will be to develop molecules that block the action of TCL1, trying to discover what cell pathway or pathways are being used by cells destined to become malignant. They also are working to discover if TCL1 is abnormally expressed in other human cancers.

"I think this has real promise," Teitell said. "This has a chance to go all the way."

Kim Irwin | EurekAlert!

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>