Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Model for common type of cancer developed by UCLA scientists


Scientists at UCLA’s Jonsson Cancer Center have developed the world’s first animal model for mature human B-cell lymphomas, a discovery that may lead to the uncovering of the genetic mutations that cause these types of cancer. Mature B-cell type lymphomas account for about 85 percent of all lymphomas.

The basic science discovery is outlined in the Oct. 29 issue of the peer-reviewed journal Proceedings of the National Academy of Sciences.

"What we can do now is grow cell lines out of this model to determine which cancer-causing companion mutations arise," said Dr. Mike Teitell, a physician and researcher at UCLA’s Jonsson Cancer Center and the lead author of the article, available online at "This model appears to yield a large spectrum of mature B-cell lymphomas."

Teitell, collaborator Randolph Wall, and their research team, scientist Katrina Hoyer and Dr. Samuel French, had previously identified an abnormality in a gene called T-cell leukemia 1 (TCL1) in patients with B-cell lymphomas, especially in those suffering from AIDS.

The researchers wondered what would happen if they developed an animal model with abnormally expressed TCL1 -- would the model develop cancer? Teitell and his team got more than they expected: animals with abnormally regulated TCL1 developed three different types of lymphoma.

"This finding suggested that specific mutations in addition to TCL1 were causing distinct types of B-cell malignancy. It was a very surprising result," Teitell said "Before this, we did not have a model for any of these forms of lymphoma. Since we can now generate all these different types, we are in a position to understand the changes that cause each type. For example, why does one animal with abnormal TCL1 expression develop one type of lymphoma, while a genetically identical animal develops a different type?"

B-cell lymphomas include both Hodgkin’s and non-Hodgkin’s lymphomas. Specifically, the three types of B-cell lymphoma that grew out of Teitell’s animal model were Burkitt-like lymphoma, diffuse large B-cell lymphoma and follicular center cell lymphoma, all of which are classified as non-Hodgkin’s lymphomas.

Now the team wants to know why these three forms arose in the same genetic background. Teitell theorizes that there may be different cell pathways -- or highways that cells use to send signals -- involved in the three different types of lymphoma. If Teitell and his team can identify the pathways, they can attempt to block them with new drugs, Teitell said, akin to hitting the brake on a car or turning off a light switch. The idea is to interrupt the cell signal before it triggers the genetic mutation that causes the cancer to begin to grow.

"I think we may have identified an important mechanism that links certain signaling pathways with the causation of certain cancers, in this case in the immune system but perhaps in other parts of the body as well," Teitell said.

Lymphomas are cancers that start in lymphoid tissue, also called lymphatic tissue. The lymphatic system is important for filtering germs and cancer cells, as well as fluid from the extremities and internal organs. Lymphoid tissue is found in many places throughout the body, including lymph nodes, the thymus, the spleen, the tonsils and adenoids, in the bone marrow, and scattered within other systems, such as the digestive and respiratory systems.

About 60,000 Americans will develop lymphomas, and 26,000 people will die of the disease this year alone, according to the American Cancer Society.

The next step for Teitell and his research team will be to develop molecules that block the action of TCL1, trying to discover what cell pathway or pathways are being used by cells destined to become malignant. They also are working to discover if TCL1 is abnormally expressed in other human cancers.

"I think this has real promise," Teitell said. "This has a chance to go all the way."

Kim Irwin | EurekAlert!

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>