Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New gene for rheumatism identified


A genetic variant that can explain the occurrence of a type of rheumatic disorder called SLE has been identified by a research team at Uppsala University, Sweden. The team, led by Associate Professor Marta Alarcón at the Rudbeck Laboratory, is presenting its finding in the latest issue of the scientific journal Nature Genetics.

Nearly 6,000 predominantly young women are victims of systemic lupus erythematosus, SLE. The disease is partly genetic and causes damage to the skin and various organs. The genetic variant in the gene PDCD1 was identified in families with at least two persons suffering from the ailment. Genetic analyses have shown that the part where the gene PDCD1 is located in chromosome 2 is implicated in the disease.

The research team has determined the position of the gene with still greater precision and has sequenced the whole gene. They found several variants, but only one of them repeatedly turned up in the family members with the sickness. In order to make certain that the variant is associated with the ailment, the team studied nearly 2,500 individuals including families in the US. The variant is found in some of the patients and can explain one of the mechanisms behind the development of the disease. The genetic variant in the PDCD1 gene can modify the normal function and expression of the gene, but it is still unclear exactly how.

However, the discovery of this variant makes it possible to move on and examine how various combinations of genes work together to cause the illness. The discovery of this gene variant for SLE is, after a gene variant for Crohn’s disease, the second in the world to be identified for a so-called autoimmune disorder, that is, a disease in which cells from the immune defense produce antibodies to attack the body’s own tissues. It is also one of the few variants to be identified for what are called complex diseases, that is, diseases like heart attacks, high blood pressure, and schizophrenia.

The discovery reported by the research team at Uppsala can improve genetic diagnostics in the future and can contribute to the creation of better therapies for victims of the disorder.

Jon Hogdal | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>