Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify motor that powers parasitic cell invasion

25.10.2002


The development of drugs to combat some of the world’s most serious parasitic diseases is a step nearer with the discovery of a widely-shared gene that helps parasites to invade host cells.



The new understanding of the gene’s role in the single-celled parasite Toxoplasma gondii gives scientists a target to block that could stop the parasite literally in its tracks.

In experiments reported today in the journal Science, researchers at Imperial College London and the University of Mannheim, Germany show that the motor powering Toxoplasma’s invasion of host cells is stopped when the parasite myosin A gene is disrupted.


Myosin A is present in all members of the Apicomplexa family of parasites, which includes Toxoplasma and Plasmodium falciparum, which cause Toxoplasmosis and malaria respectively.

Toxoplasma, mainly transmitted by consumption of contaminated meat or by cat faeces, chronically infects half the world’s population. The pathogen is a leading cause of neurological birth defects in children born to mothers who contract the disease during pregnancy and can cause fatal toxoplasmosis encephalitis in immunosuppressed patients.

Scientists hope that understanding the gene’s function will aid efforts to develop drugs that target and block the way Apicomplexa parasites penetrate host cells.

Unlike most viruses and bacteria that require host cell participation to attack cells and be engulfed, Apicomplexans actively penetrate cells.

They use a unique gliding motion powered by an actin-myosin system to rapidly spread throughout tissues in the host’s body and to invade cells.

"Our research demonstrates for the first time that parasite motility is powered by an unusual motor, which is essential for invading host cells," says research leader Dr Dominique Soldati from Imperial’s Department of Biological Sciences.

"The Apicomplexa family of parasites are all strictly dependent on an unusual gliding motion to get into cells. If the parasite can’t get in, it can’t establish an infection," she says.

Once the parasite docks with the host cell it sends out proteins that bind tightly to host cell receptors and create an indented pocket in the surface of the cell. The parasite’s myosin molecules then latch onto the newly formed protein-receptor complexes pulling the myosin along a skeleton of actin and into the cell.

"Myosin A is an extremely fast moving motor, comparable in speed to the myosin responsible for the contraction of muscle in humans. The motor propels the parasite at a speed of five micrometers per second, allowing it to penetrate host cells within 10 to 30 seconds.

"This rapid entry process is essential for Apicomplexan parasites to replicate safely, hidden from the immune system," says Dr Soldati.

Researchers established myosin A’s function by knocking out the gene in Toxoplasma gondii and observing the effects on its motility. They used time-lapse microscopy to score the percentage of parasites able to glide and perform normal forms of movement on coated glass slides.

"In optimum conditions freshly released parasites exhibit circular gliding, upright twirling and helical gliding. But with only partial gene function the parasites performed a reduced number or incomplete circles and at a lower speed. With the gene completely shut down the parasites were totally unable to move."

"Toxoplasma remains an important threat to human health with the continual spread of AIDS, while the malaria parasite kills more than 1 million children each year.

"A detailed understanding of the mechanism of host cell invasion by the Apicomplexans is an important and acute goal since such studies will lead to the identification of novel therapeutic targets, which are urgently needed," says Dr Soldati.

The work was funded by the Deutsche Forschungsgemeinschaft.

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>