Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify motor that powers parasitic cell invasion

25.10.2002


The development of drugs to combat some of the world’s most serious parasitic diseases is a step nearer with the discovery of a widely-shared gene that helps parasites to invade host cells.



The new understanding of the gene’s role in the single-celled parasite Toxoplasma gondii gives scientists a target to block that could stop the parasite literally in its tracks.

In experiments reported today in the journal Science, researchers at Imperial College London and the University of Mannheim, Germany show that the motor powering Toxoplasma’s invasion of host cells is stopped when the parasite myosin A gene is disrupted.


Myosin A is present in all members of the Apicomplexa family of parasites, which includes Toxoplasma and Plasmodium falciparum, which cause Toxoplasmosis and malaria respectively.

Toxoplasma, mainly transmitted by consumption of contaminated meat or by cat faeces, chronically infects half the world’s population. The pathogen is a leading cause of neurological birth defects in children born to mothers who contract the disease during pregnancy and can cause fatal toxoplasmosis encephalitis in immunosuppressed patients.

Scientists hope that understanding the gene’s function will aid efforts to develop drugs that target and block the way Apicomplexa parasites penetrate host cells.

Unlike most viruses and bacteria that require host cell participation to attack cells and be engulfed, Apicomplexans actively penetrate cells.

They use a unique gliding motion powered by an actin-myosin system to rapidly spread throughout tissues in the host’s body and to invade cells.

"Our research demonstrates for the first time that parasite motility is powered by an unusual motor, which is essential for invading host cells," says research leader Dr Dominique Soldati from Imperial’s Department of Biological Sciences.

"The Apicomplexa family of parasites are all strictly dependent on an unusual gliding motion to get into cells. If the parasite can’t get in, it can’t establish an infection," she says.

Once the parasite docks with the host cell it sends out proteins that bind tightly to host cell receptors and create an indented pocket in the surface of the cell. The parasite’s myosin molecules then latch onto the newly formed protein-receptor complexes pulling the myosin along a skeleton of actin and into the cell.

"Myosin A is an extremely fast moving motor, comparable in speed to the myosin responsible for the contraction of muscle in humans. The motor propels the parasite at a speed of five micrometers per second, allowing it to penetrate host cells within 10 to 30 seconds.

"This rapid entry process is essential for Apicomplexan parasites to replicate safely, hidden from the immune system," says Dr Soldati.

Researchers established myosin A’s function by knocking out the gene in Toxoplasma gondii and observing the effects on its motility. They used time-lapse microscopy to score the percentage of parasites able to glide and perform normal forms of movement on coated glass slides.

"In optimum conditions freshly released parasites exhibit circular gliding, upright twirling and helical gliding. But with only partial gene function the parasites performed a reduced number or incomplete circles and at a lower speed. With the gene completely shut down the parasites were totally unable to move."

"Toxoplasma remains an important threat to human health with the continual spread of AIDS, while the malaria parasite kills more than 1 million children each year.

"A detailed understanding of the mechanism of host cell invasion by the Apicomplexans is an important and acute goal since such studies will lead to the identification of novel therapeutic targets, which are urgently needed," says Dr Soldati.

The work was funded by the Deutsche Forschungsgemeinschaft.

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>