Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify motor that powers parasitic cell invasion

25.10.2002


The development of drugs to combat some of the world’s most serious parasitic diseases is a step nearer with the discovery of a widely-shared gene that helps parasites to invade host cells.



The new understanding of the gene’s role in the single-celled parasite Toxoplasma gondii gives scientists a target to block that could stop the parasite literally in its tracks.

In experiments reported today in the journal Science, researchers at Imperial College London and the University of Mannheim, Germany show that the motor powering Toxoplasma’s invasion of host cells is stopped when the parasite myosin A gene is disrupted.


Myosin A is present in all members of the Apicomplexa family of parasites, which includes Toxoplasma and Plasmodium falciparum, which cause Toxoplasmosis and malaria respectively.

Toxoplasma, mainly transmitted by consumption of contaminated meat or by cat faeces, chronically infects half the world’s population. The pathogen is a leading cause of neurological birth defects in children born to mothers who contract the disease during pregnancy and can cause fatal toxoplasmosis encephalitis in immunosuppressed patients.

Scientists hope that understanding the gene’s function will aid efforts to develop drugs that target and block the way Apicomplexa parasites penetrate host cells.

Unlike most viruses and bacteria that require host cell participation to attack cells and be engulfed, Apicomplexans actively penetrate cells.

They use a unique gliding motion powered by an actin-myosin system to rapidly spread throughout tissues in the host’s body and to invade cells.

"Our research demonstrates for the first time that parasite motility is powered by an unusual motor, which is essential for invading host cells," says research leader Dr Dominique Soldati from Imperial’s Department of Biological Sciences.

"The Apicomplexa family of parasites are all strictly dependent on an unusual gliding motion to get into cells. If the parasite can’t get in, it can’t establish an infection," she says.

Once the parasite docks with the host cell it sends out proteins that bind tightly to host cell receptors and create an indented pocket in the surface of the cell. The parasite’s myosin molecules then latch onto the newly formed protein-receptor complexes pulling the myosin along a skeleton of actin and into the cell.

"Myosin A is an extremely fast moving motor, comparable in speed to the myosin responsible for the contraction of muscle in humans. The motor propels the parasite at a speed of five micrometers per second, allowing it to penetrate host cells within 10 to 30 seconds.

"This rapid entry process is essential for Apicomplexan parasites to replicate safely, hidden from the immune system," says Dr Soldati.

Researchers established myosin A’s function by knocking out the gene in Toxoplasma gondii and observing the effects on its motility. They used time-lapse microscopy to score the percentage of parasites able to glide and perform normal forms of movement on coated glass slides.

"In optimum conditions freshly released parasites exhibit circular gliding, upright twirling and helical gliding. But with only partial gene function the parasites performed a reduced number or incomplete circles and at a lower speed. With the gene completely shut down the parasites were totally unable to move."

"Toxoplasma remains an important threat to human health with the continual spread of AIDS, while the malaria parasite kills more than 1 million children each year.

"A detailed understanding of the mechanism of host cell invasion by the Apicomplexans is an important and acute goal since such studies will lead to the identification of novel therapeutic targets, which are urgently needed," says Dr Soldati.

The work was funded by the Deutsche Forschungsgemeinschaft.

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>