Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Less Expensive HIV Progression Test as Effective as Current Tests in Use

17.10.2002


Heat-denatured p24 Antigen Tests Can Cut Cost of HIV Progression Monitoring



Researchers at the Johns Hopkins Bloomberg School of Public Health and the University of Zurich, Switzerland, have identified a test for monitoring the progression of HIV in the early stages of the disease that is less expensive than current tests used to monitor the progression of HIV. The test, called HIV-1 protein 24 (p24) antigen, predicts disease progression as well as CD4 lymphocyte count and HIV-1 RNA viral load, the measurements currently used to determine when patients should start antiviral drug therapy to prevent AIDS. The study, “Heat-Denatured Human Immunodeficiency Virus Type 1 Protein 24 Antigen: Prognostic Value in Adults with Early-Stage Disease,” appears in the Oct. 15 issue of The Journal of Infectious Diseases.

Timothy R. Sterling, MD, a study co-author and assistant professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health said, “The test could be used to determine when to initiate anti-retroviral therapy in HIV-infected persons. And because it costs much less than both CD4 lymphocyte count and HIV-1 RNA viral load, the heat-denatured p24 antigen test could be of particular benefit in developing countries, where the burden of HIV infection is great.”


According to Dr. Sterling, CD4 lymphocytes and HIV-1 RNA are excellent predictors of disease progression as well as a patient’s response to therapy and are used to determine when to initiate anti-retroviral therapy. However, the current tests to monitor CD4 lymphocytes and HIV-1 RNA are expensive. The heat-denatured assay separates antigen-antibody complexes and increases the detection of p24 antigen in patients during the early stages of the disease.

“P24 antigen is a protein in HIV. The test is administered by drawing blood from a patient, heating the plasma, and then measuring the amount of p24 antigen found in the sample. Higher levels of p24 indicates a greater risk of disease progression,” explained Dr. Sterling. The authors found that a p24 level of 5 pg/ml was comparable to a CD4 lymphocyte count of 350 cells/mm3 or a viral load of 30,000 copies/ml (b-DNA).

The 494 participants in the study were injection drug users enrolled in a longitudinal cohort study. Blood samples were obtained and analyzed to quantify T-cell subsets; then HIV-1 RNA and p24 antigen were quantified in specimens that had been frozen after collection. Semiannual follow-up interviews were also held with participants during the five-year study.

Using Johns Hopkins Hospital prices, researchers found that conducting a CD4 lymphocyte count is $88, whereas a HIV-1 RNA level costs $152. The total cost of a p24 antigen test is approximately $20 when used qualitatively and $30 when used quantitatively. Because of the frequency with which monitoring must be performed to assess disease progression and response to therapy, researchers said they believe the heat-denatured p24 antigen test would be much more affordable than the currently available tests. In addition, they said the p24 antigen assay is readily automated and easy to perform, and that storage is less demanding than that required for other tests.

Sterling said, “The heat-denatured p24 antigen test was comparable with that of the HIV-1 RNA and CD4 lymphocytes. In addition to its low cost, it could be used either alone, or in conjunction with the other tests. It would be very useful in making decisions regarding the initiation of anti-retroviral therapy, particularly in resource-poor settings.”

Co-Authors of the study were Donald R. Hoover, Jacquie Astemborski, David Vlahov, John G. Bartlett, and Jorg Schupbach.

The study was funded by the Swiss Federal Office of Public Health, Swiss Human Immunodeficiency Virus Cohort Study/Swiss National Science Foundation, National Institute on Drug Abuse, and National Institute of Allergy and Infectious Diseases.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham @ 410-955-6878 or paffairs@jhsph.edu.

Kenna L. Brigham | EurekAlert!
Further information:
http://www.journals.uchicago.edu/JID/home.html
http://www.jhsph.edu/Dept/EPI/index.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>