Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New breast cancer gene discovered

08.10.2002


DBC2 gene missing or inactive in 60% of breast cancers examined



Scientists at Cold Spring Harbor Laboratory and the University of Washington have discovered a new tumor suppressor gene that is missing or inactive in as many as 60% of breast cancers, and is also altered in lung cancer.

The discovery of the gene, called DBC2 (for deleted in breast cancer) is highly significant because DBC2 is among the first tumor suppressor genes to be clearly associated with sporadic breast cancer. Sporadic disease accounts for greater than 90% of all forms of breast and other cancers, in contrast to heritable forms of cancer, which account for a relatively small percentage of the disease.


Importantly, the researchers showed that production of the Dbc2 protein in breast cancer cells kills the cancer cells or stops them from growing.

The study - to be published on October 15 in the Proceedings of the National Academy of Sciences - will be published on-line (at PNAS Early Edition, http://www.pnas.org/papbyrecent.shtml) during the week of October 7. The media embargo will lift at 5:00 PM EST on Monday, October 7.

In 1997, the same research group at Cold Spring Harbor Laboratory, led by Dr. Michael Wigler, identified one of the only other tumor suppressor genes (called PTEN) to be clearly associated with sporadic cancer. In 1981, Dr. Wigler’s group discovered the first cancer-causing oncogene, called RAS, from human cells.

In 1990, the same research group at the University of Washington, led by Dr. Mary-Claire King, discovered the first gene linked to hereditary breast cancer, called BRCA1.


For more information, a comprehensive press release, a copy of the study, or to arrange interviews with Dr. Wigler or Dr. King, please contact Peter Sherwood, Chief Science Correspondent, Cold Spring Harbor Laboratory (tel: 516-367-6947; e-mail: sherwood@cshl.edu).


Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/
http://www.pnas.org/papbyrecent.shtml

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>