Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Virtual stomach’ reveals pill’s path

04.10.2002


Penn State mechanical engineers, working with medical and pharmaceutical researchers, have developed the first computer-generated "virtual stomach" to follow the path of extended-release tablets that are designed to remain in the stomach for hours while slowly releasing medicine.



The researchers note that, although many medications are prepared in extended-release form, the details of exactly how the pills break down and release medicine in the stomach are largely unknown. The new "virtual stomach" has shown that tablet motion and mixing are highly sensitive to the pill’s location in the stomach and to the coordination between the stomach’s contractions and the opening and closing of the valve leading to the intestines.

Dr. James G. Brasseur, professor of mechanical engineering and leader of the project, says, "We can simulate the tablet breaking down with our new approach, watch the slow release of medication happen in a computer movie and analyze the process. Computer simulation allows us to ’control’ the stomach and therefore provides more detail than you could get with human or even animal experiments. In fact, computer simulation may be the only way to observe the stomach’s mechanical processes in such fine detail."


The researchers expect the new information provided by the virtual stomach to aid in the design and delivery of new extended-release tablet formulations, to shed light on diseases involving stomach motility and to help explain basic gastric function.

Dr. Anupam Pal will present the team’s results at the meeting of the European Society of Neurogastroenterology and Motility in Tubingen, Germany, Oct. 4. Pal is first author of the team’s report and a postdoctoral researcher in Brasseur’s laboratory. He received the Society’s Young Investigator Award for his work on the study. His poster is titled: "Relationship Between Gastric Motility, Mixing and Drug Release, Analyzed Using Computer Simulation."

The other authors, in addition to Brasseur and Pal, are Dr. Bertil Abramhamsson, AstraZeneca Pharmaceuticals, Mölndal, Sweden; Dr. Werner Schwizer, Dept. of Gastroenterology, University Hospital, Zurich, Switzerland; and Dr. Geoffrey S. Hubbard, Dept. of Gastroenterology, The Royal Melbourne Hospital, Australia.

The virtual stomach combines a sophisticated computer program with a realistic stomach geometry model derived from Magnetic Resonance Imaging (MRI) movies of the human stomach. The resulting computer simulations are presented as colorful, cartoon-like movies of the human stomach showing pressures, the motion of gastric fluid, and the path and breakdown of tablets. These computer simulations allow researchers to analyze the specific processes that lead to release and mixing of medicines from pills in the stomach.

For example, Pal measured the shear stresses or the "rubbing" the tablet undergoes from fluids and the walls of the stomach. At the same time, he evaluated the dispersion and mixing of the medication due to the wave-like contractions on the stomach walls. He found that these wave-like motions underlie both the shear stresses that contribute to the breakdown of the tablet and the mixing of the medicine. Pal also found that extended periods of moderate shear stress exist which continuously wear the tablet’s surface and lead to gradual dispersal of the medication. At the same time, shorter-acting high stresses can remove large pieces of tablet surface and contribute to uneven wear and uneven dispersal of the medication.

The virtual stomach simulations also revealed that the stomach has three very different zones, one very gentle, one moderately stressful to tablets and conducive to mixing and a third highly active zone where a tablet can break down rapidly and mixing is accelerated. He also found that buoyancy affects longer-time mixing and drug release. AstraZeneca Pharmaceuticals supported the research.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>