Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical switch determines if healthy cells are killed by chemotherapy

04.10.2002


Investigators at Washington University School of Medicine in St. Louis have discovered a mechanism that helps explain why healthy cells are not killed by DNA-damaging cancer chemotherapy drugs. The findings are published in the Oct. 4 issue of the journal Cell.



DNA-damaging agents are the most common kind of drugs used to treat cancer. Like most chemotherapy drugs, these are carried in the blood and travel throughout the body. They work by irreparably gumming up DNA in rapidly dividing tumor cells. That damage then triggers the cells to self-destruct through a natural process known as apoptosis, or active cell death.

The drugs also can harm rapidly dividing healthy cells, such as those in the hair follicles, but most healthy cells are unaffected. It is not known why these drugs do not trigger apoptosis in healthy cells.


"The standard answer is that tumor cells are dividing and normal cells are not," says Steve J. Weintraub, M.D., assistant professor of surgery, division of urologic surgery, of medicine and of cell biology and physiology. "But that’s an observation, not an explanation."

The study led by Weintraub found that healthy, nondividing cells have a biochemical switch that when triggered allows apoptosis. The switch is found in a protein that blocks apoptosis known as Bcl-xL.

"Our findings show that if Bcl-xL is inactivated through a chemical process known as deamidation, DNA-damaging chemotherapy will kill even healthy cells," says Weintraub, who is a researcher with the Cellular Proliferation research program at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The study focuses on a family of proteins known as Bcl-2, which play a central role in both promoting and inhibiting apoptosis. The investigators first exposed cancer cells from bone, ovarian and other tumors to the anti-cancer drug cisplatin. When they looked at the Bcl-2 proteins from the cells that had died by apoptosis, they found that in each case one member of the Bcl-2 family, the protein Bcl-xL, had been modified by deamidation.

Deamidation makes slight changes in two amino acids in the Bcl-xL protein. As if someone had thrown a switch, those changes alter the shape of Bcl-xL and thereby inactivate it. In its active state, Bcl-xL is tightly joined with another Bcl-2 protein that when free triggers apoptosis. When Bcl-xL is switched off through deamidation, it releases the second protein, and apoptosis can proceed.

The researchers also exposed a line of healthy, nondividing human fibroblasts and several lines of mouse fibroblasts to cisplatin. In some of the cells, the investigators had artificially inactivated the Bcl-xL protein. They found that cells with normal Bcl-xL were not affected by the drug, while those with the inactive Bcl-xL protein died by apoptosis, indicating they were now susceptible to cisplatin.

"Our findings show that normal cells somehow suppress the signal that throws the switch and avoid self-destructing," says Weintraub. They also suggest that tumor cells that suppress the same signal also might be resistant to chemotherapy drugs, he says.

Weintraub is now studying the nature and regulation of the signal that targets Bcl-xL.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>