Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical switch determines if healthy cells are killed by chemotherapy

04.10.2002


Investigators at Washington University School of Medicine in St. Louis have discovered a mechanism that helps explain why healthy cells are not killed by DNA-damaging cancer chemotherapy drugs. The findings are published in the Oct. 4 issue of the journal Cell.



DNA-damaging agents are the most common kind of drugs used to treat cancer. Like most chemotherapy drugs, these are carried in the blood and travel throughout the body. They work by irreparably gumming up DNA in rapidly dividing tumor cells. That damage then triggers the cells to self-destruct through a natural process known as apoptosis, or active cell death.

The drugs also can harm rapidly dividing healthy cells, such as those in the hair follicles, but most healthy cells are unaffected. It is not known why these drugs do not trigger apoptosis in healthy cells.


"The standard answer is that tumor cells are dividing and normal cells are not," says Steve J. Weintraub, M.D., assistant professor of surgery, division of urologic surgery, of medicine and of cell biology and physiology. "But that’s an observation, not an explanation."

The study led by Weintraub found that healthy, nondividing cells have a biochemical switch that when triggered allows apoptosis. The switch is found in a protein that blocks apoptosis known as Bcl-xL.

"Our findings show that if Bcl-xL is inactivated through a chemical process known as deamidation, DNA-damaging chemotherapy will kill even healthy cells," says Weintraub, who is a researcher with the Cellular Proliferation research program at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The study focuses on a family of proteins known as Bcl-2, which play a central role in both promoting and inhibiting apoptosis. The investigators first exposed cancer cells from bone, ovarian and other tumors to the anti-cancer drug cisplatin. When they looked at the Bcl-2 proteins from the cells that had died by apoptosis, they found that in each case one member of the Bcl-2 family, the protein Bcl-xL, had been modified by deamidation.

Deamidation makes slight changes in two amino acids in the Bcl-xL protein. As if someone had thrown a switch, those changes alter the shape of Bcl-xL and thereby inactivate it. In its active state, Bcl-xL is tightly joined with another Bcl-2 protein that when free triggers apoptosis. When Bcl-xL is switched off through deamidation, it releases the second protein, and apoptosis can proceed.

The researchers also exposed a line of healthy, nondividing human fibroblasts and several lines of mouse fibroblasts to cisplatin. In some of the cells, the investigators had artificially inactivated the Bcl-xL protein. They found that cells with normal Bcl-xL were not affected by the drug, while those with the inactive Bcl-xL protein died by apoptosis, indicating they were now susceptible to cisplatin.

"Our findings show that normal cells somehow suppress the signal that throws the switch and avoid self-destructing," says Weintraub. They also suggest that tumor cells that suppress the same signal also might be resistant to chemotherapy drugs, he says.

Weintraub is now studying the nature and regulation of the signal that targets Bcl-xL.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>