Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical switch determines if healthy cells are killed by chemotherapy

04.10.2002


Investigators at Washington University School of Medicine in St. Louis have discovered a mechanism that helps explain why healthy cells are not killed by DNA-damaging cancer chemotherapy drugs. The findings are published in the Oct. 4 issue of the journal Cell.



DNA-damaging agents are the most common kind of drugs used to treat cancer. Like most chemotherapy drugs, these are carried in the blood and travel throughout the body. They work by irreparably gumming up DNA in rapidly dividing tumor cells. That damage then triggers the cells to self-destruct through a natural process known as apoptosis, or active cell death.

The drugs also can harm rapidly dividing healthy cells, such as those in the hair follicles, but most healthy cells are unaffected. It is not known why these drugs do not trigger apoptosis in healthy cells.


"The standard answer is that tumor cells are dividing and normal cells are not," says Steve J. Weintraub, M.D., assistant professor of surgery, division of urologic surgery, of medicine and of cell biology and physiology. "But that’s an observation, not an explanation."

The study led by Weintraub found that healthy, nondividing cells have a biochemical switch that when triggered allows apoptosis. The switch is found in a protein that blocks apoptosis known as Bcl-xL.

"Our findings show that if Bcl-xL is inactivated through a chemical process known as deamidation, DNA-damaging chemotherapy will kill even healthy cells," says Weintraub, who is a researcher with the Cellular Proliferation research program at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The study focuses on a family of proteins known as Bcl-2, which play a central role in both promoting and inhibiting apoptosis. The investigators first exposed cancer cells from bone, ovarian and other tumors to the anti-cancer drug cisplatin. When they looked at the Bcl-2 proteins from the cells that had died by apoptosis, they found that in each case one member of the Bcl-2 family, the protein Bcl-xL, had been modified by deamidation.

Deamidation makes slight changes in two amino acids in the Bcl-xL protein. As if someone had thrown a switch, those changes alter the shape of Bcl-xL and thereby inactivate it. In its active state, Bcl-xL is tightly joined with another Bcl-2 protein that when free triggers apoptosis. When Bcl-xL is switched off through deamidation, it releases the second protein, and apoptosis can proceed.

The researchers also exposed a line of healthy, nondividing human fibroblasts and several lines of mouse fibroblasts to cisplatin. In some of the cells, the investigators had artificially inactivated the Bcl-xL protein. They found that cells with normal Bcl-xL were not affected by the drug, while those with the inactive Bcl-xL protein died by apoptosis, indicating they were now susceptible to cisplatin.

"Our findings show that normal cells somehow suppress the signal that throws the switch and avoid self-destructing," says Weintraub. They also suggest that tumor cells that suppress the same signal also might be resistant to chemotherapy drugs, he says.

Weintraub is now studying the nature and regulation of the signal that targets Bcl-xL.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>