Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug that enhances glutamate transmission in brain being evaluated for fragile X

28.08.2002


Rush is one of only two sites in nation testing the drug that may provide new treatment option

Physicians at Rush-Presbyterian St. Luke’s Medical Center have begun to recruit patients as part of a clinical research study that will evaluate the effectiveness of a new drug as a potential treatment for fragile X syndrome and autism.

The trials are taking place at Rush and the University of California, Davis. The principal investigators in the study are Dr. Elizabeth Berry-Kravis, a pediatric neurologist at Rush-Presbyterian St. Luke’s Medical Center; and Dr. Randi J. Hagerman, medical director, M.I.N.D. Institute, School of Medicine, University of California, Davis. Dr. Edwin Cook an expert in autism at the University of Chicago contributed to the development of the clinical protocol.



"Currently there are no therapies on the market to treat cognitive deficits associated with fragile X syndrome or autism," said Berry-Kravis. "However, in the past five years, basic research has led to an improved understanding of these diseases and a number of scientists have suggested that the use of a drug to enhance glutamate transmission could be beneficial." The study will evaluate CX516 (Ampalex®), an Ampakine® compound, which has been proven to enhance glutamate transmission in the brain through activation of AMPA receptors. Ampalex® is made by Cortex Pharmaceuticals which will provide the study medication. The research is funded by the FRAXA Research Foundation.

Fragile X is an inherited disorder and is the most common cause of inherited mental retardation, affecting 1 in 2,000 males and 1 and 4,000 females. Symptoms of fragile X syndrome include mental impairment ranging from learning disabilities to mental retardation, attention deficit and hyperactivity, anxiety and unstable mood, autistic-like behaviors, long face, large ears, flat feet, and hyperextensible joints, especially fingers. "Once you have a patient with fragile X syndrome, that’s a big red flag because that means the mutation has been in the family in a silent form for years," says Berry-Kravis.

Males are typically more severely affected than females. Although most males have mental retardation, only one-half of females have intellectual impairment (which tends to be milder in females); the rest have either normal IQ or learning disabilities. Emotional and behavioral problems are common in both sexes. Currently there are no therapeutic treatments for the learning problems associated with the disease, although medications for anxiety and ADHD are used to treat behavioral symptoms. Rush-Presbyterian-St. Luke’s Medical Center is the only clinical site for care of fragile X patients in the Chicago area.

Autism is a complex developmental disability that typically appears during the first three years of life. The result of a neurological disorder that affects the functioning of the brain, autism and its associated behaviors have been estimated to occur in as many as 2 to 6 in 1,000 individuals. Autism is four times more prevalent in males than in females.

A variety of scientific evidence suggests that increasing glutamate neuronal transmission may be beneficial in autism and in fragile X syndrome. Imaging studies demonstrate that areas of the brain that are extremely rich in glutamate transmission are less active in autistic patients. Molecular studies suggest that although genes involved in the AMPA-type glutamate receptor are more active in autistic patients, the density of AMPA-type glutamate receptors is decreased. Drugs that reduce glutamatergic transmission induce symptoms similar to those seen in autistic patients. Taken together, these facts suggest that enhancing AMPA receptor activity may be beneficial in autistic patients.

The scientific logic for using an AMPA receptor activator in fragile X syndrome is even more compelling because of recent findings regarding the direct impact of the genetic defect in fragile X on neural cell activity. The genetic defect results in the reduction or absence of an important protein, FMRP. FMRP is believed to play an important role in allowing normal levels of AMPA receptor proteins to be made - in the absence of FMRP, AMPA receptors are decreased and show lower activity levels. The abnormal AMPA receptor activity is likely related to the abnormal connections seen between neurons in the brains of those with fragile X syndrome. Increasing the activity of AMPA receptors with an Ampakine® may to some degree overcome the reduced number of AMPA receptors, with resulting improvements in brain connections in individuals with fragile X syndrome.

The design of the Phase II clinical study is a randomized double-blind placebo controlled trial lasting four weeks. Fifty patients from the Chicago area will be recruited for the study. It is anticipated that enrollment will occur over a two-year period. Outcome measures will include testing in four domains of attention and executive function; spatial and verbal/auditory memory; language; and behavior.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>