Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug that enhances glutamate transmission in brain being evaluated for fragile X

28.08.2002


Rush is one of only two sites in nation testing the drug that may provide new treatment option

Physicians at Rush-Presbyterian St. Luke’s Medical Center have begun to recruit patients as part of a clinical research study that will evaluate the effectiveness of a new drug as a potential treatment for fragile X syndrome and autism.

The trials are taking place at Rush and the University of California, Davis. The principal investigators in the study are Dr. Elizabeth Berry-Kravis, a pediatric neurologist at Rush-Presbyterian St. Luke’s Medical Center; and Dr. Randi J. Hagerman, medical director, M.I.N.D. Institute, School of Medicine, University of California, Davis. Dr. Edwin Cook an expert in autism at the University of Chicago contributed to the development of the clinical protocol.



"Currently there are no therapies on the market to treat cognitive deficits associated with fragile X syndrome or autism," said Berry-Kravis. "However, in the past five years, basic research has led to an improved understanding of these diseases and a number of scientists have suggested that the use of a drug to enhance glutamate transmission could be beneficial." The study will evaluate CX516 (Ampalex®), an Ampakine® compound, which has been proven to enhance glutamate transmission in the brain through activation of AMPA receptors. Ampalex® is made by Cortex Pharmaceuticals which will provide the study medication. The research is funded by the FRAXA Research Foundation.

Fragile X is an inherited disorder and is the most common cause of inherited mental retardation, affecting 1 in 2,000 males and 1 and 4,000 females. Symptoms of fragile X syndrome include mental impairment ranging from learning disabilities to mental retardation, attention deficit and hyperactivity, anxiety and unstable mood, autistic-like behaviors, long face, large ears, flat feet, and hyperextensible joints, especially fingers. "Once you have a patient with fragile X syndrome, that’s a big red flag because that means the mutation has been in the family in a silent form for years," says Berry-Kravis.

Males are typically more severely affected than females. Although most males have mental retardation, only one-half of females have intellectual impairment (which tends to be milder in females); the rest have either normal IQ or learning disabilities. Emotional and behavioral problems are common in both sexes. Currently there are no therapeutic treatments for the learning problems associated with the disease, although medications for anxiety and ADHD are used to treat behavioral symptoms. Rush-Presbyterian-St. Luke’s Medical Center is the only clinical site for care of fragile X patients in the Chicago area.

Autism is a complex developmental disability that typically appears during the first three years of life. The result of a neurological disorder that affects the functioning of the brain, autism and its associated behaviors have been estimated to occur in as many as 2 to 6 in 1,000 individuals. Autism is four times more prevalent in males than in females.

A variety of scientific evidence suggests that increasing glutamate neuronal transmission may be beneficial in autism and in fragile X syndrome. Imaging studies demonstrate that areas of the brain that are extremely rich in glutamate transmission are less active in autistic patients. Molecular studies suggest that although genes involved in the AMPA-type glutamate receptor are more active in autistic patients, the density of AMPA-type glutamate receptors is decreased. Drugs that reduce glutamatergic transmission induce symptoms similar to those seen in autistic patients. Taken together, these facts suggest that enhancing AMPA receptor activity may be beneficial in autistic patients.

The scientific logic for using an AMPA receptor activator in fragile X syndrome is even more compelling because of recent findings regarding the direct impact of the genetic defect in fragile X on neural cell activity. The genetic defect results in the reduction or absence of an important protein, FMRP. FMRP is believed to play an important role in allowing normal levels of AMPA receptor proteins to be made - in the absence of FMRP, AMPA receptors are decreased and show lower activity levels. The abnormal AMPA receptor activity is likely related to the abnormal connections seen between neurons in the brains of those with fragile X syndrome. Increasing the activity of AMPA receptors with an Ampakine® may to some degree overcome the reduced number of AMPA receptors, with resulting improvements in brain connections in individuals with fragile X syndrome.

The design of the Phase II clinical study is a randomized double-blind placebo controlled trial lasting four weeks. Fifty patients from the Chicago area will be recruited for the study. It is anticipated that enrollment will occur over a two-year period. Outcome measures will include testing in four domains of attention and executive function; spatial and verbal/auditory memory; language; and behavior.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>