Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers research shows caffeine may prevent skin cancer

27.08.2002


Treating the skin with caffeine has been shown to prevent skin cancer in laboratory studies conducted in the Susan Lehman Cullman Laboratory for Cancer Research at Rutgers, The State University of New Jersey.



"It is not a sun-screening effect, but it’s something more than that – it’s a biological effect," said Allan Conney, William M. and Myrle W. Garbe Professor of Cancer and Leukemia Research at Rutgers’ Ernest Mario School of Pharmacy. "We may have found a safe and effective way of preventing skin cancer," he said of the discovery, described in the Proceedings of the National Academy of Sciences early online edition, available the week of Aug. 26.

It has been known for a long time that skin cancer is caused predominantly by sunlight. The authors, a group that included Conney and a team of other researchers in the laboratory, explained that sunscreen use has decreased the risk of skin cancers, but there is a need to identify additional approaches for skin-cancer prevention in individuals previously exposed to high-dose levels of sunlight.


The research team, all members of the school’s department of chemical biology, studied a special strain of hairless mice that had been exposed to ultraviolet B light twice weekly for 20 weeks. This put the mice at risk for tumor formation and skin cancer. After stopping the exposures, the researchers applied caffeine and epigallocatechin gallate (EGCG), two components of green tea, topically to the skin. Both caffeine and EGCG significantly inhibited cancer formation in the mice.

Although the study showed that most of the positive effects were true for both of these substances, caffeine has the advantage over EGCG. EGCG is chemically less stable, so there could be a problem in applying it topically, Conney said A previous study conducted in the laboratory dealt with caffeine taken orally. The caffeine was provided in the drinking fluid for the mice and the researchers found it inhibited ultraviolet light-induced tumors and cancers in this case, as well. Conney cites advantages to using the direct skin application over oral administration, pointing to the ability to provide more highly concentrated doses and larger overall dosages. "Whether you can give enough orally to be effective in humans is not known," said Conney. "Whether people could ingest that amount without becoming hyperactive is also a real question mark."

The newly published study also reported the highly selective action of both caffeine and EGCG in killing cancer cells. Adjacent normal skin cells were not affected. "The discovery of this selectivity was very exciting to us," said Conney. "Also, in our study it didn’t matter if the tumors were benign or malignant; cells in both were killed while leaving the normal cells alone."

The study suggests further research is needed to determine whether or not the skin application of these agents would be effective in people. The researchers anticipate human clinical trials in the near future. "For now," said Conney, "if you are a mouse, it would be terrific. In people we just don’t know yet."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>