Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ras Gene Causes Cancer Via Different Pathways in Humans vs. Mice

15.08.2002


Finding May Present a New Target for Anti-Cancer Drugs



Researchers at the Duke Comprehensive Cancer Center have found that a known cancer-causing gene, Ras, may exert its influence through very different pathways in humans than in mice, a finding that could offer tantalizing new targets for anti-cancer therapy.

While studying the Ras, gene, Duke researchers unexpectedly found that it activates an obscure group of proteins in humans, but not in mice, in order to turn normal cells malignant. Yet many cancer treatments are based on data scientists derive from mouse models.


“Our study highlights a little-known pathway that appears to play a critical role in the ability of Ras, to transform human cells, but not mouse cells, to become tumorigenic,” said Christopher Counter, Ph.D., a cancer biologist at the Duke Comprehensive Cancer Center. “This pathway could present a new protein target for anti-cancer drugs in humans, and it reinforces the inherent differences between human and mouse cancers in terms of how they evolve.”

Results of the Duke study are being published in the Aug. 15, 2002, issue of Genes and Development.

The Duke researchers decided to study oncogenic Ras, one of the first genes found to be involved in human cancers, because it is associated with very different malignancies in humans than in mice. Ras is activated in one-third of all human cancers, and as high as 90 percent in specific cancers, like pancreatic. In mice, Ras is associated with breast, skin and lung cancers.

Despite these differences, it was assumed that Ras signals the same set of proteins in mice as it does in humans for cells to become cancerous. The Duke scientists challenged this assumption and studied, for the first time, how Ras transforms human cells.

Team members Nesrin Hamad, Ph.D., and Joel Elconin, M.D., set out to map how Ras communicates with various signaling pathways that, when over-activated, ultimately command cells to proliferate uncontrollably. The scientists placed human and mouse cells in laboratory dishes, genetically modified the cells to express mutated forms of Ras, then traced how the protein produced by the Ras gene promoted cells to transform.

As expected, Ras exerted its malignant effects in mice cells primarily through a protein called Raf, whose specific job is to modify a chain of additional proteins that direct the cell’s behavior to proliferate. Unexpectedly, Raf was not sufficient to turn normal human cells cancerous, the study found. Instead, in human cells the Ras gene appeared to activate a different protein pathway, called RalGEFs, to transform normal cells into cancer.

Little is known about RalGEFs, possibly because they have never been considered critical to human cancers, but researchers suspect that they may assist cells in ferrying molecules within and outside of cells -- a process called vesicle transport. How these functions relate to Ras’ ability to transform normal cells into cancers remains unknown, said Counter. Nevertheless, the Duke study clearly showed that RalGEFs were necessary for the ability of Ras to transform normal human cells, he added.

“We propose that there are multiple proteins that Ras signals through in order to transform human cells, but there are significant differences in the relative potency of each pathway between humans and mice” Counter said. “The Ras oncogene appears to exert its function in humans through a pathway that was largely ignored.”

Rebecca Levine | EurekAlert!
Further information:
http://cancer.duke.edu/
http://www.genesdev.org/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>