Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ras Gene Causes Cancer Via Different Pathways in Humans vs. Mice

15.08.2002


Finding May Present a New Target for Anti-Cancer Drugs



Researchers at the Duke Comprehensive Cancer Center have found that a known cancer-causing gene, Ras, may exert its influence through very different pathways in humans than in mice, a finding that could offer tantalizing new targets for anti-cancer therapy.

While studying the Ras, gene, Duke researchers unexpectedly found that it activates an obscure group of proteins in humans, but not in mice, in order to turn normal cells malignant. Yet many cancer treatments are based on data scientists derive from mouse models.


“Our study highlights a little-known pathway that appears to play a critical role in the ability of Ras, to transform human cells, but not mouse cells, to become tumorigenic,” said Christopher Counter, Ph.D., a cancer biologist at the Duke Comprehensive Cancer Center. “This pathway could present a new protein target for anti-cancer drugs in humans, and it reinforces the inherent differences between human and mouse cancers in terms of how they evolve.”

Results of the Duke study are being published in the Aug. 15, 2002, issue of Genes and Development.

The Duke researchers decided to study oncogenic Ras, one of the first genes found to be involved in human cancers, because it is associated with very different malignancies in humans than in mice. Ras is activated in one-third of all human cancers, and as high as 90 percent in specific cancers, like pancreatic. In mice, Ras is associated with breast, skin and lung cancers.

Despite these differences, it was assumed that Ras signals the same set of proteins in mice as it does in humans for cells to become cancerous. The Duke scientists challenged this assumption and studied, for the first time, how Ras transforms human cells.

Team members Nesrin Hamad, Ph.D., and Joel Elconin, M.D., set out to map how Ras communicates with various signaling pathways that, when over-activated, ultimately command cells to proliferate uncontrollably. The scientists placed human and mouse cells in laboratory dishes, genetically modified the cells to express mutated forms of Ras, then traced how the protein produced by the Ras gene promoted cells to transform.

As expected, Ras exerted its malignant effects in mice cells primarily through a protein called Raf, whose specific job is to modify a chain of additional proteins that direct the cell’s behavior to proliferate. Unexpectedly, Raf was not sufficient to turn normal human cells cancerous, the study found. Instead, in human cells the Ras gene appeared to activate a different protein pathway, called RalGEFs, to transform normal cells into cancer.

Little is known about RalGEFs, possibly because they have never been considered critical to human cancers, but researchers suspect that they may assist cells in ferrying molecules within and outside of cells -- a process called vesicle transport. How these functions relate to Ras’ ability to transform normal cells into cancers remains unknown, said Counter. Nevertheless, the Duke study clearly showed that RalGEFs were necessary for the ability of Ras to transform normal human cells, he added.

“We propose that there are multiple proteins that Ras signals through in order to transform human cells, but there are significant differences in the relative potency of each pathway between humans and mice” Counter said. “The Ras oncogene appears to exert its function in humans through a pathway that was largely ignored.”

Rebecca Levine | EurekAlert!
Further information:
http://cancer.duke.edu/
http://www.genesdev.org/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>