Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach by Cornell researcher could enable treatment of some cancers with retinoic acid with little or no side effects

14.08.2002


For some time doctors have been using a vitamin A derivative, retinoic acid (RA), to treat several cancers, particularly prostate cancer and leukemia, and they are now experimenting with the drug to treat breast cancer. The great drawback to RA, however, is that it requires high levels of the medication in order to turn genes "on" and "off," often triggering devastating and potentially fatal side effects.



Now, a Cornell University biochemist has learned how to make tumor cells up to 1,000 times more sensitive to RA so that much smaller doses would be required to flick the "on" and "off" switch (a process known as the induction of gene expression).

"This novel strategy for regulating the anticarcinogenic activity of retinoic acid has potential not only for treating tumors but also, perhaps, for protecting high-risk patients preventively," says Noa Noy, a professor of nutritional sciences at Cornell. "We have discovered that a naturally occurring protein in the cell can dramatically enhance the ability of RA to inhibit the proliferation of breast cancer cells, so that much less RA -- perhaps even the amount naturally present in the body -- is required to suppress tumor development."


The new findings are described in two recent articles in Molecular and Cellular Biology (April and July 2002).

RA belongs to a class of compounds known as retinoids that play key roles in regulating gene transcription and, therefore, govern multiple functions in the body, such as cell division and differentiation, immune response and embryonic development. They also control the development and spread of cancer cells, and some, including RA, can inhibit tumor growth by preventing cancer cell proliferation. Retinoids are now in clinical trials for treatment of head, neck and breast cancers, as well as for diabetes, arteriosclerosis and emphysema.

In the body, RA activates a protein in cells known as retinoic acid receptor (RAR) that binds to certain DNA sequences and turns target genes on or off. A typical treatment with RA seeks to activate RAR in order to switch on favorable genes. However, at pharmacological doses, RA and other retinoids are highly toxic. Moreover, cancer patients frequently become resistant to RA therapy over time.

Noy decided to take a different approach by seeking to understand how the gene-transcription activity of RA is regulated by two proteins called cellular retinoic acid-binding proteins (CRABP-I and CRABP-II). These proteins were identified decades ago, but their exact functions remained obscure.

"We have found that as soon as RA binds to CRABP-II, the protein rapidly moves into the cell nucleus, unlike CRABP-I, which keeps RA out of the nucleus. Once in the nucleus, CRABP-II binds to RAR and channels RA to it, thereby activating the transcription factor to turn genes on or off," explains Noy.

Noy has found that CRABP-II greatly enhances the transcriptional activity of retinoic acid receptors by directly targeting RA to them. Therefore, she has been working on introducing CRABP-II to cells to treat cancer. She is looking into patenting her approaches.

Noy also has indications that CRABP-II can slow tumor growth in the presence of very small amounts of RA. In new, as yet unpublished, research, Noy -- in collaboration with nutritional sciences colleague Danny Manor, and Rodney Page and Alexander Nikitin of Cornell’s College of Veterinary Medicine -- studied the effectiveness of CRABP-II in mice with cancer. When tumors in the mice reached half a centimeter, one group received injections of a virus that expressed CRABP-II in the tumors.

"The rate of growth of tumors in the mice that received CRABP-II was dramatically slower," says Noy. "The implication here is that we may not even need to administer RA to treat tumors, but can make use of the RA already present in the body and use CRABP-II to sensitize the tumor to it," she observes.

Noy hopes to perfect the technique so that researchers can develop an approach to introduce CRABP-II in specific tissues and thereby influence target-gene expression.

The research was supported, in part, by the National Institutes of Health, the Swiss National Science Foundation and the Novartis Foundation.

Susan S. Lang | EurekAlert!
Further information:
http://www.nutrition.cornell.edu/faculty/noy.html

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>