Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical physicist treats spinal tumors faster with new procedure

09.08.2002


Working together at Henry Ford Hospital in Detroit, medical physicists and clinicians have developed a new procedure that treats spinal tumors and relieves patient discomfort faster that current treatments. Called intensity-modulated spinal radiosurgery, this technique pinpoints a tumor’s location to deliver a powerful dose of radiation that avoids healthy areas of the spinal cord, kidneys, and lungs. This research was presented last month at the annual meeting of the American Association for Physicists in Medicine in Montreal.



"Each year roughly 100,000 people are diagnosed with spinal tumors in the U.S.," says Fang-Fang Yin, a medical physicist at Henry Ford Hospital Systems, "Most spinal tumors are located very close to the spinal cord, which is sensitive to radiation."

Because the spinal cord is so vulnerable, current spinal tumor treatments such as conventional radiotherapy and decompressive surgery require multiple lower does of radiation to protect the spinal cord while treating the tumor.


To treat the tumor more effectively, the researchers use "intensity modulated" radiation, which means they vary the intensity of the radiation over time. The intensity-modulated radiation, delivered from various angles, provides a maximum dose to a specific 3-D region of the tumor while minimizing exposure to healthy tissue in the spinal cord.

Another component of the procedure is an image-guided technique that helps fine-tune the intensity-modulated technique for more precise treatment.

"Real-time imaging techniques, including the use of infrared cameras, video cameras, and diagnostic x-ray imaging devices are used to locate the tumor location and deliver a high dose of radiation," says Yin, "During the last 14 months, 51 patients have been treated with spinal radiosurgery."

Patients often have to wait several weeks after conventional treatments to notice relief from their symptoms, but with spinal radiosurgery, patients notice relief in two weeks.

Yin hopes that spinal radiosurgery will supplement conventional radiation therapy and help treat recurrent spinal tumors following surgery or radiation therapy.


For more information contact:
Fang-Fang Yin, Ph.D.
Medical Physicist
Henry Ford Hospital Systems
Detroit, MI
313-916-1021
fyin1@hfhs.org


Emilie Lorditch | EurekAlert!
Further information:
http://www.aip.org/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>