Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical physicist treats spinal tumors faster with new procedure

09.08.2002


Working together at Henry Ford Hospital in Detroit, medical physicists and clinicians have developed a new procedure that treats spinal tumors and relieves patient discomfort faster that current treatments. Called intensity-modulated spinal radiosurgery, this technique pinpoints a tumor’s location to deliver a powerful dose of radiation that avoids healthy areas of the spinal cord, kidneys, and lungs. This research was presented last month at the annual meeting of the American Association for Physicists in Medicine in Montreal.



"Each year roughly 100,000 people are diagnosed with spinal tumors in the U.S.," says Fang-Fang Yin, a medical physicist at Henry Ford Hospital Systems, "Most spinal tumors are located very close to the spinal cord, which is sensitive to radiation."

Because the spinal cord is so vulnerable, current spinal tumor treatments such as conventional radiotherapy and decompressive surgery require multiple lower does of radiation to protect the spinal cord while treating the tumor.


To treat the tumor more effectively, the researchers use "intensity modulated" radiation, which means they vary the intensity of the radiation over time. The intensity-modulated radiation, delivered from various angles, provides a maximum dose to a specific 3-D region of the tumor while minimizing exposure to healthy tissue in the spinal cord.

Another component of the procedure is an image-guided technique that helps fine-tune the intensity-modulated technique for more precise treatment.

"Real-time imaging techniques, including the use of infrared cameras, video cameras, and diagnostic x-ray imaging devices are used to locate the tumor location and deliver a high dose of radiation," says Yin, "During the last 14 months, 51 patients have been treated with spinal radiosurgery."

Patients often have to wait several weeks after conventional treatments to notice relief from their symptoms, but with spinal radiosurgery, patients notice relief in two weeks.

Yin hopes that spinal radiosurgery will supplement conventional radiation therapy and help treat recurrent spinal tumors following surgery or radiation therapy.


For more information contact:
Fang-Fang Yin, Ph.D.
Medical Physicist
Henry Ford Hospital Systems
Detroit, MI
313-916-1021
fyin1@hfhs.org


Emilie Lorditch | EurekAlert!
Further information:
http://www.aip.org/

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>