Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical physicist treats spinal tumors faster with new procedure

09.08.2002


Working together at Henry Ford Hospital in Detroit, medical physicists and clinicians have developed a new procedure that treats spinal tumors and relieves patient discomfort faster that current treatments. Called intensity-modulated spinal radiosurgery, this technique pinpoints a tumor’s location to deliver a powerful dose of radiation that avoids healthy areas of the spinal cord, kidneys, and lungs. This research was presented last month at the annual meeting of the American Association for Physicists in Medicine in Montreal.



"Each year roughly 100,000 people are diagnosed with spinal tumors in the U.S.," says Fang-Fang Yin, a medical physicist at Henry Ford Hospital Systems, "Most spinal tumors are located very close to the spinal cord, which is sensitive to radiation."

Because the spinal cord is so vulnerable, current spinal tumor treatments such as conventional radiotherapy and decompressive surgery require multiple lower does of radiation to protect the spinal cord while treating the tumor.


To treat the tumor more effectively, the researchers use "intensity modulated" radiation, which means they vary the intensity of the radiation over time. The intensity-modulated radiation, delivered from various angles, provides a maximum dose to a specific 3-D region of the tumor while minimizing exposure to healthy tissue in the spinal cord.

Another component of the procedure is an image-guided technique that helps fine-tune the intensity-modulated technique for more precise treatment.

"Real-time imaging techniques, including the use of infrared cameras, video cameras, and diagnostic x-ray imaging devices are used to locate the tumor location and deliver a high dose of radiation," says Yin, "During the last 14 months, 51 patients have been treated with spinal radiosurgery."

Patients often have to wait several weeks after conventional treatments to notice relief from their symptoms, but with spinal radiosurgery, patients notice relief in two weeks.

Yin hopes that spinal radiosurgery will supplement conventional radiation therapy and help treat recurrent spinal tumors following surgery or radiation therapy.


For more information contact:
Fang-Fang Yin, Ph.D.
Medical Physicist
Henry Ford Hospital Systems
Detroit, MI
313-916-1021
fyin1@hfhs.org


Emilie Lorditch | EurekAlert!
Further information:
http://www.aip.org/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>