Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy boosts cancer chemotherapy

06.08.2002


Researchers at the University of Chicago have found a way to combine cancer chemotherapy with gene therapy designed to disrupt the growth of blood vessels to a tumor. The combination, tested in mice, is far more effective than standard chemotherapy and has no additional side effects. This innovative approach is described in the August issue of the Journal of Clinical Investigation.

This new approach evolved out of a similar system, now entering phase-2 human trials, that combines gene therapy with radiation therapy.

"The radiation therapy approach appears to be quite effective, aiming a powerful anticancer arsenal at the tumor," said Ralph Weichselbaum, M.D., professor and chairman of radiation oncology at the University of Chicago and director of the study. "The new combination with chemotherapy, however, not only enables us to target the original tumor but also potentially to aim at the small clusters of cancer cells that may have spread to distant sites."



The therapy uses a modified cold virus to insert the gene for tumor necrosis factor (TNF) into cells within a tumor. TNF is a potent biological substance that can kill cancer cells directly and disrupt their blood supply, but it can be very toxic when given systemically. The researchers originally altered the TNF gene so that it could be turned on by radiation therapy. Now they have produced a version of the gene that can be activated by exposure to the common anti-cancer drug cisplatin. So mice treated with both the gene injections and cisplatin have high concentrations of TNF within the injected tumors, but nowhere else.

The researchers found that the combined therapy was far more effective than either cisplatin or TNF-gene injections alone. Tumors treated with the combination of gene therapy and cisplatin had "significant regression," note the authors, with "no additional toxicity."

Untreated tumors doubled in size within four days and grew to more than four times their original size in two weeks. Tumors treated with cisplatin alone or injected with the virus alone grew more slowly.

Cisplatin is currently used to treat many types of cancer, including lung, head and neck, ovarian and bladder cancers. Adding TNF increases the anti-cancer effects of cisplatin at the injection site. It may also interfere with the tumor’s ability to increase its blood supply. Since TNF was produced only at the injection sites, it did not increase toxicity.

TNF may also, indirectly, support cisplatin’s assault on distant metastases. Earlier this year Weichselbaum’s group showed that TNF stimulated the production of angiostatin, which inhibits a tumor’s efforts to grow new blood vessels.

This novel approach to combination cancer therapy grew out of a series of discoveries from Weichselbaum’s laboratory. In 1989, they discovered that radiation therapy could induce cancer cells to release small amounts of TNF, which in turn made the radiation more effective.

In 1998, Weichselbaum showed that radiation dramatically enhanced the effects of angiogenesis inhibitors -- natural substances such as angiostatin or endostation. These interfere with a tumor’s efforts to grow new blood vessels, which are necessary for tumor growth.

Since 1999, Weichselbaum has worked with colleagues and scientists at GenVec, a biotech company based in Gaithersburg, MD, to develop safe and effective ways to insert a supercharged TNF gene into tumor cells. Infected cells produce high levels of TNF only when radiation or chemotherapy turns on the gene.


This research was supported by grants from the National Cancer Institute and GenVec. Two of the authors have patented this novel approach to combination cancer therapy and have a financial interest in the the company that produces the virus

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>