Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy boosts cancer chemotherapy

06.08.2002


Researchers at the University of Chicago have found a way to combine cancer chemotherapy with gene therapy designed to disrupt the growth of blood vessels to a tumor. The combination, tested in mice, is far more effective than standard chemotherapy and has no additional side effects. This innovative approach is described in the August issue of the Journal of Clinical Investigation.

This new approach evolved out of a similar system, now entering phase-2 human trials, that combines gene therapy with radiation therapy.

"The radiation therapy approach appears to be quite effective, aiming a powerful anticancer arsenal at the tumor," said Ralph Weichselbaum, M.D., professor and chairman of radiation oncology at the University of Chicago and director of the study. "The new combination with chemotherapy, however, not only enables us to target the original tumor but also potentially to aim at the small clusters of cancer cells that may have spread to distant sites."



The therapy uses a modified cold virus to insert the gene for tumor necrosis factor (TNF) into cells within a tumor. TNF is a potent biological substance that can kill cancer cells directly and disrupt their blood supply, but it can be very toxic when given systemically. The researchers originally altered the TNF gene so that it could be turned on by radiation therapy. Now they have produced a version of the gene that can be activated by exposure to the common anti-cancer drug cisplatin. So mice treated with both the gene injections and cisplatin have high concentrations of TNF within the injected tumors, but nowhere else.

The researchers found that the combined therapy was far more effective than either cisplatin or TNF-gene injections alone. Tumors treated with the combination of gene therapy and cisplatin had "significant regression," note the authors, with "no additional toxicity."

Untreated tumors doubled in size within four days and grew to more than four times their original size in two weeks. Tumors treated with cisplatin alone or injected with the virus alone grew more slowly.

Cisplatin is currently used to treat many types of cancer, including lung, head and neck, ovarian and bladder cancers. Adding TNF increases the anti-cancer effects of cisplatin at the injection site. It may also interfere with the tumor’s ability to increase its blood supply. Since TNF was produced only at the injection sites, it did not increase toxicity.

TNF may also, indirectly, support cisplatin’s assault on distant metastases. Earlier this year Weichselbaum’s group showed that TNF stimulated the production of angiostatin, which inhibits a tumor’s efforts to grow new blood vessels.

This novel approach to combination cancer therapy grew out of a series of discoveries from Weichselbaum’s laboratory. In 1989, they discovered that radiation therapy could induce cancer cells to release small amounts of TNF, which in turn made the radiation more effective.

In 1998, Weichselbaum showed that radiation dramatically enhanced the effects of angiogenesis inhibitors -- natural substances such as angiostatin or endostation. These interfere with a tumor’s efforts to grow new blood vessels, which are necessary for tumor growth.

Since 1999, Weichselbaum has worked with colleagues and scientists at GenVec, a biotech company based in Gaithersburg, MD, to develop safe and effective ways to insert a supercharged TNF gene into tumor cells. Infected cells produce high levels of TNF only when radiation or chemotherapy turns on the gene.


This research was supported by grants from the National Cancer Institute and GenVec. Two of the authors have patented this novel approach to combination cancer therapy and have a financial interest in the the company that produces the virus

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>