Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy boosts cancer chemotherapy

06.08.2002


Researchers at the University of Chicago have found a way to combine cancer chemotherapy with gene therapy designed to disrupt the growth of blood vessels to a tumor. The combination, tested in mice, is far more effective than standard chemotherapy and has no additional side effects. This innovative approach is described in the August issue of the Journal of Clinical Investigation.

This new approach evolved out of a similar system, now entering phase-2 human trials, that combines gene therapy with radiation therapy.

"The radiation therapy approach appears to be quite effective, aiming a powerful anticancer arsenal at the tumor," said Ralph Weichselbaum, M.D., professor and chairman of radiation oncology at the University of Chicago and director of the study. "The new combination with chemotherapy, however, not only enables us to target the original tumor but also potentially to aim at the small clusters of cancer cells that may have spread to distant sites."



The therapy uses a modified cold virus to insert the gene for tumor necrosis factor (TNF) into cells within a tumor. TNF is a potent biological substance that can kill cancer cells directly and disrupt their blood supply, but it can be very toxic when given systemically. The researchers originally altered the TNF gene so that it could be turned on by radiation therapy. Now they have produced a version of the gene that can be activated by exposure to the common anti-cancer drug cisplatin. So mice treated with both the gene injections and cisplatin have high concentrations of TNF within the injected tumors, but nowhere else.

The researchers found that the combined therapy was far more effective than either cisplatin or TNF-gene injections alone. Tumors treated with the combination of gene therapy and cisplatin had "significant regression," note the authors, with "no additional toxicity."

Untreated tumors doubled in size within four days and grew to more than four times their original size in two weeks. Tumors treated with cisplatin alone or injected with the virus alone grew more slowly.

Cisplatin is currently used to treat many types of cancer, including lung, head and neck, ovarian and bladder cancers. Adding TNF increases the anti-cancer effects of cisplatin at the injection site. It may also interfere with the tumor’s ability to increase its blood supply. Since TNF was produced only at the injection sites, it did not increase toxicity.

TNF may also, indirectly, support cisplatin’s assault on distant metastases. Earlier this year Weichselbaum’s group showed that TNF stimulated the production of angiostatin, which inhibits a tumor’s efforts to grow new blood vessels.

This novel approach to combination cancer therapy grew out of a series of discoveries from Weichselbaum’s laboratory. In 1989, they discovered that radiation therapy could induce cancer cells to release small amounts of TNF, which in turn made the radiation more effective.

In 1998, Weichselbaum showed that radiation dramatically enhanced the effects of angiogenesis inhibitors -- natural substances such as angiostatin or endostation. These interfere with a tumor’s efforts to grow new blood vessels, which are necessary for tumor growth.

Since 1999, Weichselbaum has worked with colleagues and scientists at GenVec, a biotech company based in Gaithersburg, MD, to develop safe and effective ways to insert a supercharged TNF gene into tumor cells. Infected cells produce high levels of TNF only when radiation or chemotherapy turns on the gene.


This research was supported by grants from the National Cancer Institute and GenVec. Two of the authors have patented this novel approach to combination cancer therapy and have a financial interest in the the company that produces the virus

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>