Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Georgia researchers link increased risk of illness to sewage sludge used as fertilizer

30.07.2002


Burning eyes, burning lungs, skin rashes and other symptoms of illness have been found in a study of residents living near land fertilized with Class B biosolids, a byproduct of the human waste treatment process.



This study is the first linking adverse health effects in humans to the land application of Class B biosolids to be published in a medical journal. It was co-authored by David Lewis, a UGA research microbiologist also affiliated with the U.S. Environmental Protection Agency (EPA)’s National Exposure Research Laboratory; David Gattie, assistant professor of agricultural engineering at the University of Georgia’s College of Agricultural and Environmental Sciences; Marc Novak, a research technician at UGA’s School of Marine Sciences; Susan Sanchez, assistant professor of veterinary medicine at UGA; and Charles Pumphrey, a physician from Prime Care of Sun City in Menifee, Calif. The article appeared this month in the British medical journal, BMC Public Health.

Researchers found that affected residents lived within approximately one kilometer (0.6 miles) of land application sites and generally complained of irritation after exposure to winds blowing from treated fields. A prevalence of Staphylococcus aureus infections, a condition commonly accompanying diaper rash, was found in the skin and respiratory tracts of some individuals. Approximately 25 percent of the individuals surveyed were infected, and two died. The 54 individuals surveyed lived near 10 land application sites in Alabama, California, Florida, New Hampshire, Ohio, Ontario, Pennsylvania and Texas. S. aureus is commonly found in the lower human colon and tends to invade irritated or inflamed tissue.


"The EPA did not consider S. aureus to be a significant public health risk even though it is a leading cause of hospital-acquired infections and is commonly found in sewage," said Lewis. "When approving sludge for use as a fertilizer, EPA looked at chemical and pathogen risks separately without considering that certain chemicals could increase the risk of infection."

Chemicals such as lime, which is added during sludge processing, can irritate the skin and respiratory tract and make people more susceptible to infection, according to Lewis. The American Chemical Society recently published another article on pathogen risks from sludge by Lewis and Gattie in their journal Environmental Science & Technology.

Though modern treatment can eliminate more than 95 percent of the pathogens, enough remain in the concentrated Class B sludge leaving treatment plants to pose a health risk, according to Lewis and Gattie.

On July 2, the National Research Council of the National Academy of Sciences (NAS) concluded that there may be public health risks from using processed sewage sludge as a commercial fertilizer. Approximately 60 percent of an estimated 5.6 million tons of dry sludge is used or disposed of annually in the United States.

The NAS report entitled "Biosolids Applied to Land: Advancing Standards and Practices" cites growing allegations that exposure to Class B sludge, the most common form, is causing illnesses and sporadic deaths among residents. The report concludes that certain types of exposure, such as inhalation of sludge particles, "were not adequately evaluated" previously and no work has been done on risks from mixtures of pathogens and chemicals found in sludge. In 1989, an EPA study found 25 groups of pathogens in sludge, including bacteria such as E. coli and salmonella; viruses, including hepatitis A; intestinal worms; harmful protozoa; and fungus.

Sludge also includes traces of household chemicals poured down drains, detergents from washing machines, heavy metals from industry, synthetic hormones from birth control pills, pesticides, and dioxins, a group of compounds that have been linked to cancer.

Fertilization of land with processed sewage sludge, or "biosolids," has become common practice in Western Europe, the United States and Canada. Local governments, however, are increasingly restricting or banning the practice in response to residents reporting adverse health effects.

"Most people are not aware this is going on in the U.S.," said Gattie. "Most people don’t realize that a concentrated sludge of waste products is being processed into a cheap commercial fertilizer and applied to fields near our homes. ’Biosolids’ does not connote ’sewage’ to most people." He notes this practice has become more common after ocean dumping of sewage was prohibited.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>