Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-filtered infrared-A (wIRA) can act as a penetration enhancer for topically applied substances

23.07.2008
An irradiation with water-filtered infrared-A (wIRA) represents a contact free, easily applied alternative to an occlusive dressing for the improvement of the penetration of topically applied substances.
Unlike other penetration increasing procedures (which are based e.g. on a mechanical or chemical alteration of the skin), an irradiation with wIRA maintains the integrity of the skin (including structure integrity), which is important for fulfilling protection functions, and shows good skin turgor and no signs of desiccation.

Therefore wIRA has an immediate broad relevance for clinical application, e.g. for the therapeutic application in dermatology, internal medicine, orthopedics, rheumatology etc. As already a pure pre-irradiation with wIRA (without irradiation after application of the substance) improves penetration, wIRA can be used to improve penetration even of thermolabile substances.

Water-filtered infrared-A (wIRA) irradiation has already been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone.

A study of the Charité Berlin, just published on July 21st, 2008, in the interdisciplinary medical e-Journal "GMS German Medical Science" of the Association of the Scientific Medical Societies in Germany (AWMF) [1], investigated the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised controlled study in humans.

The penetration profiles of the hydrophilic dye fluorescein and the lipophilic dye curcumin in separate standard water-in-oil emulsions were determined on the inner forearm of test persons by tape stripping in combination with spectroscopic measurements. Additionally, the penetration was investigated in vivo by laser scanning microscopy. Transepidermal water loss, hydration of the epidermis, and surface temperature were determined. Three different procedures (modes A, B, C) were used in a randomised order on three separate days of investigation in each of 12 test persons. In mode A, the two dyes were applied on different skin areas without water-filtered infrared-A (wIRA) irradiation.

In mode B, the skin surface was irradiated with wIRA over 30 min before application of the two dyes (water-filtered spectrum: 590-1400 nm with dominant amount of wIRA). In mode C, the two dyes were applied and immediately afterwards the skin was irradiated with wIRA over 30 min. In all modes, tape stripping started 30 min after application of the formulations. Main variable of interest was the ratio of the amount of the dye in the deeper (second) 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum.

The penetration profiles of the hydrophilic fluorescein showed in case of pretreatment or treatment with wIRA (modes B and C) an increased penetration depth compared to the non-irradiated skin (mode A): The ratio of the amount of the dye in the deeper (second) 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum showed medians for mode A of 0.017, for mode B of 0.084, for mode C of 0.104 (significant difference between modes).

In contrast to fluorescein, the lipophilic curcumin showed no differences in the penetration kinetics, in reference to whether the skin was irradiated with wIRA or not. These effects were confirmed by laser scanning microscopy. Water-filtered infrared-A irradiation increased the hydration of the stratum corneum: transepidermal water loss rose from approximately 8.8 g m-2 h-1 before wIRA irradiation to 14.2 g m-2 h-1 after wIRA irradiation and skin hydration rose from 67 to 87 relative units. Skin surface temperature increased from 32.8°C before wIRA to 36.4°C after wIRA irradiation.

The better penetration of the hydrophilic dye fluorescein after or during skin irradiation (modes B and C) can be explained by increased hydration of the stratum corneum by irradiation with wIRA.

As most topically applied substances for the treatment of patients are mainly hydrophilic, wIRA can be used to improve the penetration of substances before or after application of substances, in the first case even of thermolabile substances. wIRA therefore has broad clinical relevance as a contact free alternative to an occlusive dressing, e.g. to improve the penetration and effect of topically applied cortisone in psoriasis or neurodermitis, of acyclovir in herpes zoster or herpes labialis, or of an acne therapeutic in acne papulopustulosa.

Water-filtered infrared-A (wIRA) as a special form of heat radiation (within 780-1400 nm) mainly consists of radiation with good penetration properties into tissue and therefore allows - compared to unfiltered heat radiation - a multiple energy transfer into tissue without irritating the skin, similar to the sun's heat radiation in moderate climatic zones. wIRA increases temperature, oxygen partial pressure, and perfusion in the tissue. In addition wIRA has non-thermal and non-thermic effects, which are based on putting direct stimuli on cells and cellular structures. wIRA can considerably alleviate pain and diminish elevated exudation and inflammation. wIRA can also show positive immunomodulatory effects.

Extended clinical observation over months and years shows that skin, which is irradiated daily with wIRA, presents an improved appearance with good skin turgor and no signs of desiccation.

Recent publications of the last months concerning wIRA give an overview about clinical applications in general [2] and about principles and working mechanisms of wIRA and the therapy of wounds [3], [4], [5], [6]. The handbook Wallhäußer's practice of sterilization, disinfection, antisepsis and conservation [7], which has just been published, includes as well a section about wIRA.

Wolfgang Müller | idw
Further information:
http://awmf.org

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>