Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving understanding of cell behaviour in breast cancer

16.07.2008
The invasion and spread of cancer cells to other parts of the body, known as metastasis, is a principal cause of death in patients diagnosed with breast cancer.

Although patients with early stage, small, breast tumours have an excellent short term prognosis, more than 15 to 20 per cent of them will eventually develop distant metastases, and die from the disease. Vascular invasion — through lymphatic and blood vessels — is the major route for cancer spreading to regional lymph nodes and to the rest of the body.

Dr Stewart Martin, Professor Ian Ellis and their colleagues at The University of Nottingham, and worldwide, are combining a number of approaches in a dynamic effort to improve our understanding of cell behaviour in breast cancer. Discovering how these cells operate is vital in improving diagnosis and treatment for the cancer patient in the longer term, and in identifying therapeutic targets. Already the results of their work have been excellent — with findings in relation to the spread of cancer through the lymphatic vessels prompting a much larger study funded by Cancer Research UK.

A research student within the Nottingham team, Rabab Mohammed, showed recently that specific factors that regulate the growth of blood and lymphatic vessels can identify a subset of tumours which have a high probability of recurring or spreading.

The team subsequently identified the crucial importance of assessing both the level of blood and lymph vessel invasion by cancer cells at the earliest stages of detection. It has, until recently, been very difficult to distinguish between the two. With advances in immunohistochemical techniques, blood vessels can today be reliably identified and differentiated from lymphatics. Currently clinical approaches for the assessment of vascular invasion are insufficiently robust and can result in a failure to detect some lesions accurately, or fail to differentiate adequately between blood and lymph vessels. The Nottingham team has shown — using tumour sections from 177 patients — that 96 per cent of vascular invasion in primary invasive breast cancer is predominantly of the lymph vessels. This is significant.

It is important that this finding is verified in a larger cohort of patients. The researchers are now working to accomplish this, through funding recently obtained from Cancer Research UK, using specimens from more than a thousand women with early stage breast cancer. Results from this study will also allow them to determine whether Lymphatic Vascular Invasion can be incorporated into an improved prognostic index for early stage breast cancer.

This work is being combined with gene expression studies, with bioinformatic approaches and using in vitro (cells in culture) models to identify novel therapeutic targets. It is being conducted in collaboration with a number of groups, industrial and academic, from both the UK and overseas.

References:

1. Mohammed RAA, Green A, El-Sheikh S, Paish EC, Ellis IO, Martin SG (2007) Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. British Journal of Cancer 96, 1092-1100.

2. Mohammed RAA, Martin SG, El-Sheikh S, Ellis IO (2007) Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. American Journal of Surgical Pathology 31(12):1825-33

Additional References of Relevance:

Mohammed RAA, Ellis IO, Elsheikh S, Paish EC, Martin SG. (2008) Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications. Breast Cancer Research and Treatment. Feb 22. [Epub ahead of print]

Mohammed RAA, Ellis IO, Lee AHS, Martin SG (2008) Vascular invasion in breast cancer; an overview of recent prognostic developments and molecular pathophysiological mechanisms. Histopathology (in press).

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>