Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improving understanding of cell behaviour in breast cancer

The invasion and spread of cancer cells to other parts of the body, known as metastasis, is a principal cause of death in patients diagnosed with breast cancer.

Although patients with early stage, small, breast tumours have an excellent short term prognosis, more than 15 to 20 per cent of them will eventually develop distant metastases, and die from the disease. Vascular invasion — through lymphatic and blood vessels — is the major route for cancer spreading to regional lymph nodes and to the rest of the body.

Dr Stewart Martin, Professor Ian Ellis and their colleagues at The University of Nottingham, and worldwide, are combining a number of approaches in a dynamic effort to improve our understanding of cell behaviour in breast cancer. Discovering how these cells operate is vital in improving diagnosis and treatment for the cancer patient in the longer term, and in identifying therapeutic targets. Already the results of their work have been excellent — with findings in relation to the spread of cancer through the lymphatic vessels prompting a much larger study funded by Cancer Research UK.

A research student within the Nottingham team, Rabab Mohammed, showed recently that specific factors that regulate the growth of blood and lymphatic vessels can identify a subset of tumours which have a high probability of recurring or spreading.

The team subsequently identified the crucial importance of assessing both the level of blood and lymph vessel invasion by cancer cells at the earliest stages of detection. It has, until recently, been very difficult to distinguish between the two. With advances in immunohistochemical techniques, blood vessels can today be reliably identified and differentiated from lymphatics. Currently clinical approaches for the assessment of vascular invasion are insufficiently robust and can result in a failure to detect some lesions accurately, or fail to differentiate adequately between blood and lymph vessels. The Nottingham team has shown — using tumour sections from 177 patients — that 96 per cent of vascular invasion in primary invasive breast cancer is predominantly of the lymph vessels. This is significant.

It is important that this finding is verified in a larger cohort of patients. The researchers are now working to accomplish this, through funding recently obtained from Cancer Research UK, using specimens from more than a thousand women with early stage breast cancer. Results from this study will also allow them to determine whether Lymphatic Vascular Invasion can be incorporated into an improved prognostic index for early stage breast cancer.

This work is being combined with gene expression studies, with bioinformatic approaches and using in vitro (cells in culture) models to identify novel therapeutic targets. It is being conducted in collaboration with a number of groups, industrial and academic, from both the UK and overseas.


1. Mohammed RAA, Green A, El-Sheikh S, Paish EC, Ellis IO, Martin SG (2007) Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. British Journal of Cancer 96, 1092-1100.

2. Mohammed RAA, Martin SG, El-Sheikh S, Ellis IO (2007) Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. American Journal of Surgical Pathology 31(12):1825-33

Additional References of Relevance:

Mohammed RAA, Ellis IO, Elsheikh S, Paish EC, Martin SG. (2008) Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications. Breast Cancer Research and Treatment. Feb 22. [Epub ahead of print]

Mohammed RAA, Ellis IO, Lee AHS, Martin SG (2008) Vascular invasion in breast cancer; an overview of recent prognostic developments and molecular pathophysiological mechanisms. Histopathology (in press).

Emma Thorne | alfa
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>