Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excavated Jericho Bones May Help Israeli-Palestinian-German Team Combat Tuberculosis

14.07.2008
Six-thousand year old bones excavated in Jericho may help a joint Israeli-Palestinian-German research group combat tuberculosis.

According to Prof. Mark Spigelman of the Kuvin Center for the Study of Infectious and Tropical Diseases at the Hebrew University of Jerusalem, who is leading the Israeli team, the bones, which were all excavated by Dr. Kathleen Kenyon between fifty and seventy years ago, will be tested for tuberculosis, leprosy, leishmania and malaria. However, the primary focus will be tuberculosis.

Spigelman is known for his pioneering studies of ancient diseases (palaeoepidemiology) found on mummified bodies and human remains from Hungary and Korea to Sudan, in his quest to provide answers to the development of diseases affecting us today, such as tuberculosis, hepatitis and malaria.

'TB still the biggest killer'

Tuberculosis - or TB - is a deadly infectious bacterial disease that usually attacks the lungs. Acknowledged as a disease of crowds, it is transmitted from human to human living in close contact.

Dating back thousands of years, tuberculosis was well known in antiquity. However, according to Spigelman, it is still the biggest killer even today. One-third of the world's current population has been infected by tuberculosis, resulting, in recent years, in approximately three million deaths per year.

Why Jericho?

While the origins of tuberculosis and its evolution remain unclear, it is thought it came from the first villages and small towns in the Fertile Crescent region about 9-10,000 years ago. Jericho is one of the earliest towns on earth, dating back to 9,000 B.C., and so a lot of communicable - or town - diseases would have had a good start in this community.

By examining human and animal bones from this site, the researchers will be able to see how the first people living in a crowded situation developed the diseases of crowds and how this affected the disease through changes in DNA – of both the microbes and the people.

The most significant results of this research will come from a comparison between those data for humans and corresponding animal remains which may allow the identification of animal-human vectors and their interaction.

How can this research help us today?

Preliminary work suggests that there is sufficient DNA in the bone samples to make a contribution to our understanding of the origin and development of microbial disease which could provide crucial information in the evolution of tuberculosis.

Spigelman believes that knowing how a disease developed 6,000 years ago helps us understand what it will do as it continues to evolve, and will ultimately alter the practice of public health officials in combating it.

Where were the bones until now?

Spigelman came across the long-forgotten bones while examining mummies at Sydney University's Nicholson Museum.

“They told me they had lots of boxes of bones and didn’t know what they were because they’d been deposited there fifty years earlier by an anthropologist who’d worked with Dr. Kathleen Kenyon who’d been excavating at Jericho. When I examined them, I recognized that these were the bones from Jericho, and I told them not throw them out!”

Some of the bones, which were then brought to Israel by Spigelman while on a Sir Zelman Cowan Fund fellowship, will be studied along with other bones from Jericho that have been contributed by the Duckworth Collection at Cambridge University who have agreed to participate in the project.

Israeli-Palestinian-German cooperation

The research, which is being sponsored by a grant from the German Science Foundation, Deutsche Forschungsgemeinschaft (DFG), will be conducted by the Hebrew University, Al Quds University and the Ludwig-Maximilians University, Munich. In Israel, Ph.D. and master’s students from both Al-Quds and the Hebrew Universities will devote their time exclusively to this project.

According to Spigelman, the project will also help the Palestinians develop the technology and set up their own ancient DNA lab at Al Quds University.

This is one of eleven trilateral research projects at the Hebrew University involving Palestinian, Israeli and German cooperation.

For further information, contact:

Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661

or Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882-0016.

Internet site: http://media.huji.ac.il

Rebecca Zeffert | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>