Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rare childhood bone disorder linked to gene deletion in two Navajo patients


Two seemingly unrelated Native American children have one painful thing in common: juvenile Paget’s disease (JPD), an extremely rare, bone metabolism disorder. Now, researchers at Washington University School of Medicine in St. Louis and Shriners Hospitals for Children, St. Louis, have discovered that the two patients also share an unusual genetic defect. The research team found that both patients are completely missing the gene for a recently discovered protein called osteoprotegerin, known to protect bone. The study is the first to identify a genetic cause for JPD and is published in the July 18 issue of the New England Journal of Medicine.

"By identifying this genetic defect in two people, our results not only provide insight into the cause of JPD, but also shed light on the control of bone metabolism in general," says lead investigator Michael P. Whyte, M.D., professor of medicine, genetics, and pediatrics at the School of Medicine and director of the Center for Metabolic Bone Disease and Molecular Research at Shriners Hospitals for Children. "Understanding how the skeleton forms and breaks down is key to developing ways to diagnose and treat bone disorders in children and adults, including adult Paget’s disease and osteoporosis."

JPD, also known as hereditary hyperphosphatasia or hyperostosis corticalis deformans juvenilis, has only been reported in about 40 people worldwide. It is a painful skeletal disease characterized by abnormally fast formation and breakdown of bone throughout the body, resulting in debilitating fractures and deformities beginning soon after birth. These features are similar to the much more common adult disease called Paget’s disease of bone, the second most prevalent metabolic bone disorder after osteoporosis. However, JPD appears to affect all bones in the body, whereas Paget’s disease of bone involves only a select few.

The Washington University and Shriners team examined DNA samples from two Native Americans. The first was referred to St. Louis from New Mexico in 1996 for confirmation of diagnosis and treatment at one year of age. The team later learned that a second JPD patient, described in the medical literature in 1979, also was living in New Mexico. The second patient contacted the investigators and voluntarily sent her blood samples for genetic study.

The team first evaluated the gene for RANK in these two patients. In a previous collaborative study, they had identified a RANK defect as the cause of three other rare but somewhat similar genetic bone disorders also characterized by accelerated bone metabolism. The two Navajo patients, however, had normal RANK genes.

The researchers next tested the gene that makes osteoprotegerin, a protein discovered only a few years ago. Osteoprotegerin is related functionally to RANK and recent studies have found that mice lacking the protein have a condition where bone formation and breakdown is rapid, seemingly similar to osteoporosis.

The results were surprising. Neither patient had any trace of the gene for osteoprotegerin.

"At first we thought there must be something wrong with our DNA studies," says Steven Mumm, Ph.D., research assistant professor of medicine at the School of Medicine and one of the lead investigators of the study. "Instead, we realized this was a major finding."

Genetic analysis of healthy individuals confirmed the expected presence of two copies, or alleles, of the gene for osteoprotegerin. However, analysis of the JPD patients’ healthy parents revealed that each had only one copy of the gene. Furthermore, no osteoprotegerin was found in the blood of the two patients with JPD. The researchers conclude that these results provide both a cause and a mechanism for this rare bone disease, at least for these two Native Americans.

Thanks to simultaneous advances in the Human Genome Project, centered in part at Washington University, the team was able to pinpoint exactly where DNA had broken off in these two patients.

Again, the results were startling: The genetic damage was identical in both patients. The researchers therefore conclude that these two patients likely share a common ancestor, perhaps dating back a century.

"In a way, this also is a sociology story," says Whyte. "Our findings appear to represent the emergence of a "founder effect" in this population that underwent a "bottleneck" constriction years ago. The Navajo Nation decreased from about several hundred thousand individuals to about 6 thousand in the 1860s. As the population then re-grew, the missing gene apparently was passed on to their offspring. Eventually, people with only one copy of the osteoprotegerin gene married and had children with no copies of the gene."

The team now is evaluating other patients worldwide with varying forms of JPD, who so far do not appear to have any defects in the osteoprotegerin gene.

According to Whyte, this research will not only enable prenatal diagnosis for JPD in the Navajo population, but also suggests that osteoprotegerin may be a potential treatment for these affected individuals. They also expect their findings to help elucidate the role of osteoprotegerin and other key proteins in bone formation and breakdown, shedding light on Paget’s disease of bone, osteoporosis and other common metabolic bone disorders.

Gila Z. Reckess | EurekAlert

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>