Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research highlights problems of predicting birth weights in obese mothers but finds GAP method very accurate

09.07.2008
Researchers have found what they believe to be the most accurate way of predicting the birth-weight of babies born to the growing number of obese mothers, according to a study in the UK-based journal Ultrasound in Obstetrics and Gynecology.

Experts from the University of Rochester Strong Memorial Hospital in Rochester, New York, USA, have recorded accurate results in more than nine out of ten cases using the gestation-adjusted projection method (GAP).

The GAP method uses a range of ultrasound measurements, taken when the mother is 34 to 36 weeks pregnant, and a mathematical formula to determine whether the baby is larger than the average size of babies for its gestational age. This data is then used to predict the final birth weight.

GAP is very useful when a pregnant woman is obese, as this often makes it difficult for medical staff to obtain a clear ultrasound image of her baby. This is particularly true at the end stages of pregnancies, when most birth weight measurements are obtained, so doing this earlier in the pregnancy is a distinct advantage. Previous research carried out at the University of Rochester has already shown GAP to be accurate when used on diabetic and non-diabetic patients.

“Obesity is a risk factor for almost all obstetric complications” explains Dr Loralei Thornburg from the Division of Maternal Fetal Medicine at the University. “It is particularly important to identify high birth-weight babies over 4,000 grams (just under nine pounds) as these are associated with higher complication rates for mothers and babies.

“Given that two-thirds of Americans are now obese and one in 20 are morbidly obese, it is essential that clinicians are able to predict which mothers will give birth to high birth-weight babies and to be able to reassure those who are not carrying one that is larger than average. Similar obesity rates are now being recorded in some parts of Europe as well.

“Because a simple visual ultrasound is less accurate in obese women, we need to use any measurements that we can glean from the ultrasound to predict the birth weight.”

Dr Thornburg and her colleagues looked at 357 pregnant women who were obese, according to their self-reported weight before pregnancy, and 1,025 who were normal weight. All were carrying a single baby and their average age was 27.

61 per cent of the normal weight control group were white or Hispanic and 36 per cent were black. In the obese group the figures were 53 per cent and 46 per cent respectively.

The obese women were divided into three groups.

•Class one contained the 45 per cent of women with a Body Mass Index (BMI) of between 30 and 34.9.

•Class two contained the 29 per cent of women with a BMI of between 35 and 40.

•Class three contained the 26 per cent of women who were morbidly obese, with BMIs ranging from 40 to 58. 17 per cent had a BMI of more than 50.

The researchers used the GAP method to compare the estimated birth weight, based on scans taken between weeks 34 and 36 of the woman’s pregnancy with the baby’s weight on delivery. The data was then collated for the normal weight control group and the three obese groups.

Overall the GAP method was able to predict the birth weight within 20 per cent in 93 to 95 per cent of cases, within 15 per cent in 82 to 86 per cent of cases and within 10 per cent in 59 to 70 per cent of cases. This indicates that the overall accuracy levels between the normal weight control group and the obese patients were very similar in most cases. The researchers did note, however, that the largest errors between predicted and actual birth weight occurred in women in the most obese group.

Most importantly, the researchers were also able to rule out the risk of a high birth-weight baby in over 80 per cent of cases, regardless of the mother’s BMI.

There was also a clear link between the mother’s BMI and the final birth-weight of their baby. Mothers who were morbidly obese tended to produce babies that were, on average, more than 400 grams (almost a pound) heavier than the women who were normal weight.

“Overall we found that the GAP method performed equally well for the obese and normal weight pregnant women covered by our study, but did notice some decrease in accuracy in the most obese women” says Dr Thornburg.

“We believe this could be because the babies born to women in this group were significantly larger or it was much more difficult to carry out the ultrasound tests because of the mother’s excess body weight.

“In our view, GAP may represent the best method for predicting the birth weight of babies born to obese mothers. It has high levels of accuracy and provides a convenient and easy-to-use method for medical staff.

“Obesity and high-weight babies pose extra risks for pregnant women and present real and growing challenges for health professionals. Being able to identify those risks more clearly is an important step in the management of obese pregnant women and their babies.”

Annette Whibley | alfa
Further information:
http://www.interscience.wiley.com/uog

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>