Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunburn alert: UVB does more damage to DNA than UVA

03.07.2008
New report in the FASEB Journal may lead to independence from skin cancer

As bombs burst in air this July 4, chances are that sunburn will be the red glare that most folks see – and feel. But unfortunately, even when there is no burn, the effects of the sun's ultraviolet (UV) rays can have deadly consequences.

Thanks to a new research study published in the July 2008 issue of The FASEB Journal, scientists now know why one type of UV light (UVB) is more likely to cause skin cancer than the other (UVA). This information should be useful to public health officials and government regulatory agencies in identifying specific criteria for exactly how effective consumer products, like sunscreen, are in preventing skin damage leading to skin cancer. It should also allow scientists to pursue new lines of research and treatment into repairing the damage caused by the sun's rays.

"Our study is novel in that it fills the gaps in knowledge of mechanisms involved in sunlight-associated skin cancers, which cover various aspects of DNA damage and repair and genetic alterations," said Ahmad Besaratinia, PhD, Assistant Research Scientist at City of Hope National Medical Center and first author on the report.

According to researchers from City of Hope National Medical Center in Duarte, California, UVB light is more harmful to our skin because our bodies are less able to repair the DNA damage it causes than the damage caused by UVA light. To reach their conclusions, scientists exposed three sets of cells to UVA light, UVB light and simulated sunlight. Then they compared these cells to an unexposed control group to analyze how well these cells were able to repair the damage. In addition, they analyzed published data on the genetics involved in human skin cancers. The researchers found that cells were more easily able to repair the damage caused by the UVA light, which explains why UVA light has been perceived as "safer" than UVB light. Despite this perception, scientists and public health experts caution that UVA light can and does cause serious damage that can and does lead to skin cancer.

"We know that sunlight causes skin cancer and that breakdown of the ozone layer exposes us to ever more ultraviolet radiation. This work tells us that both forms of UVA and UVB in sunlight cause damage to DNA. It forms a missing link in the chain of events from sun exposure to tumor formation," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "This research article gives us information that could lead to better sunscreens or effective 'after sun' products. It promises new ways to prevent - and perhaps to treat - the epidemic of skin cancer brought on by modern life."

Cody Mooneyhan | EurekAlert!
Further information:
http://www.fasebj.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>