Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sunburn alert: UVB does more damage to DNA than UVA

New report in the FASEB Journal may lead to independence from skin cancer

As bombs burst in air this July 4, chances are that sunburn will be the red glare that most folks see – and feel. But unfortunately, even when there is no burn, the effects of the sun's ultraviolet (UV) rays can have deadly consequences.

Thanks to a new research study published in the July 2008 issue of The FASEB Journal, scientists now know why one type of UV light (UVB) is more likely to cause skin cancer than the other (UVA). This information should be useful to public health officials and government regulatory agencies in identifying specific criteria for exactly how effective consumer products, like sunscreen, are in preventing skin damage leading to skin cancer. It should also allow scientists to pursue new lines of research and treatment into repairing the damage caused by the sun's rays.

"Our study is novel in that it fills the gaps in knowledge of mechanisms involved in sunlight-associated skin cancers, which cover various aspects of DNA damage and repair and genetic alterations," said Ahmad Besaratinia, PhD, Assistant Research Scientist at City of Hope National Medical Center and first author on the report.

According to researchers from City of Hope National Medical Center in Duarte, California, UVB light is more harmful to our skin because our bodies are less able to repair the DNA damage it causes than the damage caused by UVA light. To reach their conclusions, scientists exposed three sets of cells to UVA light, UVB light and simulated sunlight. Then they compared these cells to an unexposed control group to analyze how well these cells were able to repair the damage. In addition, they analyzed published data on the genetics involved in human skin cancers. The researchers found that cells were more easily able to repair the damage caused by the UVA light, which explains why UVA light has been perceived as "safer" than UVB light. Despite this perception, scientists and public health experts caution that UVA light can and does cause serious damage that can and does lead to skin cancer.

"We know that sunlight causes skin cancer and that breakdown of the ozone layer exposes us to ever more ultraviolet radiation. This work tells us that both forms of UVA and UVB in sunlight cause damage to DNA. It forms a missing link in the chain of events from sun exposure to tumor formation," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "This research article gives us information that could lead to better sunscreens or effective 'after sun' products. It promises new ways to prevent - and perhaps to treat - the epidemic of skin cancer brought on by modern life."

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>