Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opioids and cannabinoids influence mobility of spermatozoids

20.06.2008
A PhD thesis from the University of the Basque Country has concluded that there are opioid and cannabinoid receptors in human sperm and that these influence the mobility of spermatozoid. The research by Mr Ekaitz Agirregoitia opens the door to more effective treatment of fertility problems.

Freshly released spermatozoids cannot achieve fertilisation, they must undergo some changes for this to occur. Amongst other, such changes take place due to receptors situated in the plasmatic membrane (the layer covering the cells) and opioid and cannabinoid receptors are two of these.

On coming into contact with these, physiological reactions are generated in the body which are similar to, for example, sedation, analgesia and low blood pressure. Moreover, according to the research undertaken to date, both substances have an influence on the process of fertilisation.

It is known that the consumption of external opiates (heroin, methadone) reduces the mobility of spermatozoids and that external cannabinoids (hachis) causes changes in the reproductive process. Also, the body itself generates internal opioids and cannabinoids, secreted to enable us withstand pain or stress situations, and it is also known that this phenomenon affects the reproduction process.

Despite all this being previously known, there has been no thorough study of the opioid and cannabinoid receptors in the human sperm such as this one, carried out by Mr Ekaitz Agirregoitia Marcos for his PhD thesis, defended at the Faculty of Medicine and Odontology of the University of the Basque Country (UPV/EHU) and entitled in Basque, Opioide-hartzaileak eta kannabinoide-hartzaileak giza espermatozoideetan espresatzen dira eta haien mugikortasunean eragiten dute (Opioid receptors and cannabinoid receptors are expressed in human spermatozoids and influence their mobility).

The aim was to define this expression and the location of three opioid receptors and two cannabinoid receptors, as well as to analyse the influence of their activity in the mobility of spermatozoids. Mr Agirregoitia has a degree in Biology, specialising in Health Sciences. He is currently working as a substitute lecturer in the Department of Physiology, giving classes in Medical Biophysics and General Physiology. His PhD work was led by Dr. Jon Irazusta Astiazaran from the same Department and was undertaken in collaboration with Dr. Carmen Ochoa of the Euskalduna Clinic and Dr. Manolo Guzmán from the Complutense University in Madrid.

Pinpointing the receptors

This PhD has shown, for the first time, that all the types of opioid and cannabinoid receptors are found in human sperm. To date, only the MU opioid receptor has been found in equine sperm, and the presence in human sperm of the CB1 cannabinoid receptor was only discovered this year. Dr. Agirregoitia has used a number of techniques to find three opioid receptors (DELTA, KAPPA and MU) and two cannabinoid receptors (CB1 and CB2) in the human sperm. According to his research, all these are found at the head, the middle and the tail of the spermatozoids.

How is mobility influenced?

After defining the expression and location of the opioid and cannabinoid receptors, Dr. Agirregoitia initiated an analysis of their influence on the mobility of the spermatozoids. These receptors act like a kind of lock catch mechanism to which the opioids and cannabinoids attach themselves. Some of these substances (agonists) are capable of activating the cells, just like a key opening a lock. Others (antagonists), although fitting perfectly into the “locks”, are not capable of opening them and have the effect of blocking the receptor. Mr Agirregoitia studied both processes, incubating human sperm with agonist and antagonist synthetic substances to this end.

From this PhD thesis, presented at the UPV/EHU, it was concluded that, for the movement of the spermatozoids to be maintained, a minimum number of DELTA receptors must remain active. On the other hand, it is pointed out that the activation of the MU opioid receptor inhibits the mobility of the spermatozoids, i.e. it causes them to slow down. Finally, the PhD concludes that the KAPPA opioid receptor participates in another process which has nothing to do with mobility.

As regards the cannabinoid system, the activation of the CB1 y CB2 receptors causes the percentage of spermatozoids with rapid and progressive mobility to be reduced. Even so, as a consequence of the activation of the CB1 receptor, the number of slow spermatozoids rises, while the activation of CB2 increases the number of spermatozoids with progressive but slow movement.

The most effective diagnoses and treatments

It is known that opiods and cannabinoids regulate the function of reproduction through the central nervous system and, according to this PhD thesis, they are also able to control the process through the receptors located in the spermatozoids themselves. Thus, the type and concentration of internal opioids and cannabinoids found in the spermatozoid on its way to the egg will condition its mobility.

This work opens the door – in the medium to long term – to the diagnosis and treatment of numerous pathologies. For example, an analysis of the components of the system of opioid and cannabinoid receptors would enable us to better understand fertility problems due to currently unknown causes, exhibited by both spermatozoids as well as the female reproductive organ. Also, when designing treatment aimed at fomenting the mobility of spermatozoids, it will enable the prescribing of treatment that activates or inhibits the appropriate receptor in order to benefit the process of fertilisation.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1802&hizk=I

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>