Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opioids and cannabinoids influence mobility of spermatozoids

20.06.2008
A PhD thesis from the University of the Basque Country has concluded that there are opioid and cannabinoid receptors in human sperm and that these influence the mobility of spermatozoid. The research by Mr Ekaitz Agirregoitia opens the door to more effective treatment of fertility problems.

Freshly released spermatozoids cannot achieve fertilisation, they must undergo some changes for this to occur. Amongst other, such changes take place due to receptors situated in the plasmatic membrane (the layer covering the cells) and opioid and cannabinoid receptors are two of these.

On coming into contact with these, physiological reactions are generated in the body which are similar to, for example, sedation, analgesia and low blood pressure. Moreover, according to the research undertaken to date, both substances have an influence on the process of fertilisation.

It is known that the consumption of external opiates (heroin, methadone) reduces the mobility of spermatozoids and that external cannabinoids (hachis) causes changes in the reproductive process. Also, the body itself generates internal opioids and cannabinoids, secreted to enable us withstand pain or stress situations, and it is also known that this phenomenon affects the reproduction process.

Despite all this being previously known, there has been no thorough study of the opioid and cannabinoid receptors in the human sperm such as this one, carried out by Mr Ekaitz Agirregoitia Marcos for his PhD thesis, defended at the Faculty of Medicine and Odontology of the University of the Basque Country (UPV/EHU) and entitled in Basque, Opioide-hartzaileak eta kannabinoide-hartzaileak giza espermatozoideetan espresatzen dira eta haien mugikortasunean eragiten dute (Opioid receptors and cannabinoid receptors are expressed in human spermatozoids and influence their mobility).

The aim was to define this expression and the location of three opioid receptors and two cannabinoid receptors, as well as to analyse the influence of their activity in the mobility of spermatozoids. Mr Agirregoitia has a degree in Biology, specialising in Health Sciences. He is currently working as a substitute lecturer in the Department of Physiology, giving classes in Medical Biophysics and General Physiology. His PhD work was led by Dr. Jon Irazusta Astiazaran from the same Department and was undertaken in collaboration with Dr. Carmen Ochoa of the Euskalduna Clinic and Dr. Manolo Guzmán from the Complutense University in Madrid.

Pinpointing the receptors

This PhD has shown, for the first time, that all the types of opioid and cannabinoid receptors are found in human sperm. To date, only the MU opioid receptor has been found in equine sperm, and the presence in human sperm of the CB1 cannabinoid receptor was only discovered this year. Dr. Agirregoitia has used a number of techniques to find three opioid receptors (DELTA, KAPPA and MU) and two cannabinoid receptors (CB1 and CB2) in the human sperm. According to his research, all these are found at the head, the middle and the tail of the spermatozoids.

How is mobility influenced?

After defining the expression and location of the opioid and cannabinoid receptors, Dr. Agirregoitia initiated an analysis of their influence on the mobility of the spermatozoids. These receptors act like a kind of lock catch mechanism to which the opioids and cannabinoids attach themselves. Some of these substances (agonists) are capable of activating the cells, just like a key opening a lock. Others (antagonists), although fitting perfectly into the “locks”, are not capable of opening them and have the effect of blocking the receptor. Mr Agirregoitia studied both processes, incubating human sperm with agonist and antagonist synthetic substances to this end.

From this PhD thesis, presented at the UPV/EHU, it was concluded that, for the movement of the spermatozoids to be maintained, a minimum number of DELTA receptors must remain active. On the other hand, it is pointed out that the activation of the MU opioid receptor inhibits the mobility of the spermatozoids, i.e. it causes them to slow down. Finally, the PhD concludes that the KAPPA opioid receptor participates in another process which has nothing to do with mobility.

As regards the cannabinoid system, the activation of the CB1 y CB2 receptors causes the percentage of spermatozoids with rapid and progressive mobility to be reduced. Even so, as a consequence of the activation of the CB1 receptor, the number of slow spermatozoids rises, while the activation of CB2 increases the number of spermatozoids with progressive but slow movement.

The most effective diagnoses and treatments

It is known that opiods and cannabinoids regulate the function of reproduction through the central nervous system and, according to this PhD thesis, they are also able to control the process through the receptors located in the spermatozoids themselves. Thus, the type and concentration of internal opioids and cannabinoids found in the spermatozoid on its way to the egg will condition its mobility.

This work opens the door – in the medium to long term – to the diagnosis and treatment of numerous pathologies. For example, an analysis of the components of the system of opioid and cannabinoid receptors would enable us to better understand fertility problems due to currently unknown causes, exhibited by both spermatozoids as well as the female reproductive organ. Also, when designing treatment aimed at fomenting the mobility of spermatozoids, it will enable the prescribing of treatment that activates or inhibits the appropriate receptor in order to benefit the process of fertilisation.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1802&hizk=I

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>