Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The APCs of nerve cell function

18.06.2008
Rapid information processing in the nervous system requires synapses, specialized contact sites between nerve cells and their targets.

One particular synapse type, cholinergic, uses the chemical transmitter acetylcholine to communicate between nerve cells. Cholinergic synapses are essential for normal learning and memory, arousal, attention, and all autonomic (involuntary) nervous system functions. Malfunction of cholinergic synapses is implicated in Alzheimer's disease, age-related hearing loss, autonomic neuropathies, and certain forms of epilepsy and schizophrenia.

Despite the importance of cholinergic synapses for cognitive and autonomic functions, little is known about the mechanisms that direct their assembly during development. In a new study published in the June 2008 issue of Molecular and Cellular Neuroscience, researchers at Tufts University School of Medicine (TUSM), uncover mechanisms that direct cholinergic synapse assembly between neurons in vivo.

"We have identified the protein adenomatous polyposis coli (APC) as a key organizer of a multi-protein complex that is required for assembly of neuronal cholinergic synapses" says corresponding author Michele H. Jacob, PhD, professor of neuroscience at TUSM and member of the neuroscience program faculty of the Sackler School of Graduate Biomedical Sciences. "APC is expressed in all cell types and has multiple functions and binding partners. It is best known for its role in colorectal cancer. Our work defines a novel role for APC in neurons. We show that APC brings together several proteins at the synapse and coordinates their functions in directing the surface membrane delivery and stable retention of nicotinic acetylcholine receptors at the synapse."

"A single nerve cell synthesizes multiple different neurotransmitter receptor types. The nerve cell must target each of them to distinct synaptic sites that oppose incoming nerve cell contacts that release the correct transmitter to activate that receptor type. Matching of receptor and transmitter types is critical for proper function," states Madelaine Rosenberg, PhD, first author and research associate in the department of neuroscience at TUSM. Rosenberg says that APC and its associated proteins play a key role in accomplishing this task at cholinergic synapses. The authors report that APC interacts with and positions the microtubule plus-end binding protein EB1 and thereby directs the delivery of acetylcholine receptors to restricted surface membrane regions. APC and EB1 interact with other proteins, cytoskeletal regulators and adapter proteins, which together stabilize the scaffold at the synapse and link acetylcholine receptors to APC at the complex. This study identifies several novel components of neuronal nicotinic cholinergic synapses.

Jacob and colleagues showed that blocking APC function led to dramatic and specific decreases in acetylcholine receptor levels at synapses. They showed this by using molecular techniques to manipulate APC protein interactions during synapse formation. "We study an in vivo model system to gain insights into mechanisms that likely direct synapse assembly and function in the human nervous system," Jacob explains. She further suggests that their data "support the emerging concept that APC is a central organizer of a core multi-protein complex that directs the assembly of excitatory, but not inhibitory, synapses in the vertebrate nervous system. The importance of APC's neural role is highlighted by reports that loss of function gene mutations correlate with mental retardation, schizophrenia, and autism spectrum disorders." Jacob notes, "By identifying the synapse organizing role of APC and its associated proteins, our findings bring us closer to understanding disorders of cognition and neurological function on a molecular level."

This study is funded by the National Institute of Neurological Disorders and Stroke (NINDS) through grants to Dr. Jacob and the Tufts Center for Neuroscience Research, and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) through Tufts Medical Center Digestive Disease Center. Both NINDS and NIDDK are part of the National Institutes of Health.

Rosenberg MM, Yang F, Giovanni M, Mohn J, Temburni MK, Jacob M. Molecular and Cellular Neuroscience. 2008 (June);38(2):138-152."Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal nicotinic postsynaptic complex." Published online March 4, 2008, doi:10.1016/j.mcn.2008.02.006

About Tufts University School of Medicine

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. The Sackler School undertakes research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences, or another Tufts health sciences researcher, please contact Andrea Grossman at 617-636-3728.

Christine Fennelly | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>