Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modulated radiotherapy can cut treatment time for cancer of the rectum without increasing toxicity

16.06.2008
Application of modulated radiotherapy in the treatment of bowel cancer can enhance the results obtained by means of other conventional therapies. The technique has managed to apply the radiation in a way most adapted to the tumoral volume and risk areas, while minimising irradiation to healthy tissue.

This radiotherapy procedure involves the administration of higher daily doses of radiation but with a total dose equivalent to conventional ones. In this way the treatment time is cut by 30%, without a rise in side effects and with very high rates of pathological response.

These were the results of the study undertaken by a team of doctors at the University Hospital of Navarra, recently published in the specialist scientific journal, “International Journal of Radiation Oncology, Biology, Physics” of the American Society for Therapeutic Radiotherapy and Oncology. Involved in the research was a medical team from the area of digestive system tumours, led by Doctor José Javier Aristu, specialist at the Oncological Radiology Service. The article in the North American journal is the first published in the world giving clinical results from the application of preoperational modulated radiotherapy in tumours of the rectum.

Novelty for cancer of the rectum

IMRT (Intensity-Modulated Radiation Therapy) is a radiotherapy technique in which the administration of the radiation doses for the patient is effected by means of a lineal accelerator equipped with a system of multilaminas. Depending on the characteristics of the region that has to be irradiated, the planning system is capable of adapting high radiation doses to the shape of the target volume, enabling adjustments to be made to the morphology of the area to be treated in an individualized manner.

To date, the application of this procedure had been fundamentally limited to tumours located in the head, neck and prostrate gland. “This technique had been used in more confined tumours, more limited and smaller. We have now also begun to apply it to tumours of the rectum given that the conventional treatment, combining chemotherapy and radiotherapy, may cause high levels of toxicity”, explained Doctor Aristu.

The main goal in administering modulated radiotherapy in the treatment of cancer of the rectum, lies in excluding the greatest possible proportion of healthy tissue from the field of radiation, mainly the intestines, bladder and the healthy section of the rectum. We have shown that treatment using conventional radiotherapy and chemotherapy simultaneously causes about a 30% enteritis rate (inflammation of the intestine). However, in the study, we observed that the application of modulated radiotherapy reduces the rate of enteritis practically to the minimum in the patient who is being treated for bowel cancer. Moreover, on limiting the radiation to the tumoral mass and thus affecting healthy tissue less, it was possible to increase the daily dosage and cut the overall treatment time by approximately 30%, while the total dose administered is equivalent to two conventional treatments.

Study in phase I-II

This research, initially undertaken with 20 patients with cancer of the rectum, is in study phase I-II, the main purpose of which is to find the highest dose that can be applied using modulated radiotherapy in combination with chemotherapy. According to Doctor Aristu, the research showed for the first time that a radiation dose equivalent to that administered using conventional techniques can be applied using IMRT – in less time and with very promising rates of pathological response.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1784&hizk=I

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>