Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transfer of learning traced to areas of the brain

13.06.2008
Practice makes perfect, but a question that still remains a mystery is why it is so difficult to transfer learning from a trained to an untrained task? Why are we no better at remembering faces when we have been training our memory for words? Scientists at Umeå University and Karolinska Institutet in Sweden now show in the journal Science that the answer lies in the brain areas activated by each task.

The scientists studied the brain activity of healthy subjects as they performed a task that was part of a training program and two untrained tasks. Their performance on the trained task and one of the untrained tasks improved. What these two tasks had in common was the activation of the striatum, a cluster of neuronal nuclei in midbrain.

The study involved a group of older (over 65 years) and younger (20-30 years old) subjects, who were asked to participate in a training program to update information in working memory. After five weeks, both groups showed clear improvement on the trained tasks. The transfer effect was limited, but in the younger group transfer was observed to another test involving memory updating.

To examine the neural systems involved, the scientists studied their subjects' brains using functional magnetic resonance imaging before and after training. During scanning, they performed a verbal updating task from the training program, a non-trained numerical task, which also required updating, and a non-trained task that did not require this skill. All tasks activated areas in the frontal cortex before training. In the younger group, the striatum was also activated during the updating tasks. After training, the striatum was activated during the trained task in both groups, and during the non-trained updating task in the younger group.

Altogether, the findings show that transfer is possible when both the trained and the non-trained tasks engage specific and overlapping brain systems, which is something to be borne in mind when developing and running training and rehabilitation programs. The striatum is a critical region in the updating of the working memory, and age-related changes here can inhibit the effects of both training and transfer.

The study was a joint project between scientists at Umeå University and Karolinska Institutet under a network (Nordic Centre of Excellence in Cognitive Control) financed by the Joint Committee for Nordic Research Councils for the Humanities and the Social Sciences (NOS-HS). The work is being done at the Umeå Centre for Functional Brain Imaging (UFBI) and the authors of the paper are Erika Dahlin (Department of Integrative Medical Biology, Umeå University), Anna Stigsdotter Neely (Department of Psychology, Umeå University), Anne Larsson (Radiophysical Unit, Umeå University), Lars Bäckman (Department of Neurobiology, Care Sciences and Society, KI) and Lars Nyberg (Department of Integrative Medical Biology and Department of Radiation Sciences, Umeå University).

For further information, contact either Professor Lars Nyberg at +46 (0)90-785 33 64 or +46 (0)90-786 64 29, or via lars.nyberg@diagrad.umu.se;

or Professor Lars Bäckman at +46 (0)8-690 58 26 or +46 (0)70-5934513 or via lars.backman.1@ki.se

Hans Fällman | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>