Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring Blood Flow Helps Improve Prostate Biopsies

27.05.2008
Using a special ultrasound technique to spot areas of blood flow in the prostate gland may substantially reduce the number of unnecessary biopsies, according to a new study by urologists and radiologists at the Jefferson Prostate Diagnostic Center and the Kimmel Cancer Center at Jefferson in Philadelphia.

The researchers found that biopsies targeted to areas of increased blood flow in the prostate were twice as likely to be positive for cancer compared with conventional prostate biopsy techniques. They reported their initial results from a clinical trial this week at the annual meeting of the American Urological Association in Orlando.

According to Prostate Diagnostic Center co-director Edouard Trabulsi, M.D., assistant professor of Urology at Jefferson Medical College of Thomas Jefferson University, finding the best areas to perform biopsies in the prostate has always been difficult. Standard methods entail simply dividing the prostate into a dozen regions within the gland, almost randomly. Center co-director Ethan Halpern, M.D., who is principal investigator on the four-year, National Cancer Institute-supported trial, has been developing and refining techniques to enhance targeted biopsy of the prostate for more than a decade.

Dr. Trabulsi, Ethan Halpern, M.D., professor of Radiology and Urology at Jefferson Medical College, and their co-workers randomly divided 63 prostate biopsy patients into two groups. One group was given the drug dutasteride, which can reduce the blood flow in benign prostate tissue, while the other half received a placebo. They then compared the results from biopsies targeted by blood flow changes using contrast-enhanced ultrasound to those that were done the standard way. The study involved 979 biopsies.

“We’ve previously shown that a two-week course of the drug Avodart (dutasteride) before biopsy reduces the benign blood flow, or background noise,” Dr. Trabulsi explains, “allowing us to see subtle flow changes to target for biopsy. When we did this, we found that targeted biopsies based on the contrast-enhanced ultrasound are much more likely to detect prostate cancer. That’s the exciting part about this.”

Dr. Halpern explains that standard procedures fail to diagnose prostate cancer in approximately 30 percent of men with the disease, even though the biopsy protocol may sample 12 to 18 tissue cores from the prostate. “In the future, our goal is to perform a limited number of targeted biopsies and leave the rest of the prostate alone,” he says. “This will provide a safer, more cost-effective approach to diagnosing prostate cancer.”

The doctors say that the current study involves a novel ultrasound algorithm called flash replenishment imaging to show fine vascular flow differences. “The novelty is using the dutasteride before biopsy, using contrast-enhanced ultrasound and using the latest ultrasound technology to look for blood flow changes associated with prostate cancer.”

“We are beginning to have patients who were operated on come back in,” Dr. Trabulsi notes. “If we can show that we reliably hit the areas of cancer based on the ultrasound results and didn’t miss any, it’s a home run.”

The trial is continuing and the team is hoping to enroll about 450 men in the trial. For more information, please see the Prostate Diagnostic Center site, www.prostate.tju.edu.

Steve Benowitz | EurekAlert!
Further information:
http://www.prostate.tju.edu
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>