Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring Blood Flow Helps Improve Prostate Biopsies

27.05.2008
Using a special ultrasound technique to spot areas of blood flow in the prostate gland may substantially reduce the number of unnecessary biopsies, according to a new study by urologists and radiologists at the Jefferson Prostate Diagnostic Center and the Kimmel Cancer Center at Jefferson in Philadelphia.

The researchers found that biopsies targeted to areas of increased blood flow in the prostate were twice as likely to be positive for cancer compared with conventional prostate biopsy techniques. They reported their initial results from a clinical trial this week at the annual meeting of the American Urological Association in Orlando.

According to Prostate Diagnostic Center co-director Edouard Trabulsi, M.D., assistant professor of Urology at Jefferson Medical College of Thomas Jefferson University, finding the best areas to perform biopsies in the prostate has always been difficult. Standard methods entail simply dividing the prostate into a dozen regions within the gland, almost randomly. Center co-director Ethan Halpern, M.D., who is principal investigator on the four-year, National Cancer Institute-supported trial, has been developing and refining techniques to enhance targeted biopsy of the prostate for more than a decade.

Dr. Trabulsi, Ethan Halpern, M.D., professor of Radiology and Urology at Jefferson Medical College, and their co-workers randomly divided 63 prostate biopsy patients into two groups. One group was given the drug dutasteride, which can reduce the blood flow in benign prostate tissue, while the other half received a placebo. They then compared the results from biopsies targeted by blood flow changes using contrast-enhanced ultrasound to those that were done the standard way. The study involved 979 biopsies.

“We’ve previously shown that a two-week course of the drug Avodart (dutasteride) before biopsy reduces the benign blood flow, or background noise,” Dr. Trabulsi explains, “allowing us to see subtle flow changes to target for biopsy. When we did this, we found that targeted biopsies based on the contrast-enhanced ultrasound are much more likely to detect prostate cancer. That’s the exciting part about this.”

Dr. Halpern explains that standard procedures fail to diagnose prostate cancer in approximately 30 percent of men with the disease, even though the biopsy protocol may sample 12 to 18 tissue cores from the prostate. “In the future, our goal is to perform a limited number of targeted biopsies and leave the rest of the prostate alone,” he says. “This will provide a safer, more cost-effective approach to diagnosing prostate cancer.”

The doctors say that the current study involves a novel ultrasound algorithm called flash replenishment imaging to show fine vascular flow differences. “The novelty is using the dutasteride before biopsy, using contrast-enhanced ultrasound and using the latest ultrasound technology to look for blood flow changes associated with prostate cancer.”

“We are beginning to have patients who were operated on come back in,” Dr. Trabulsi notes. “If we can show that we reliably hit the areas of cancer based on the ultrasound results and didn’t miss any, it’s a home run.”

The trial is continuing and the team is hoping to enroll about 450 men in the trial. For more information, please see the Prostate Diagnostic Center site, www.prostate.tju.edu.

Steve Benowitz | EurekAlert!
Further information:
http://www.prostate.tju.edu
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>