Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New treatment for skeletal metastases


Norwegian and Swedish researchers have developed a new type of internal radiation therapy for cancer that has spread to skeletal tissue. Experience from an early patient test is optimistic, according to a report being presented at the 18th International Cancer Congress in Oslo this week.

Many patients with advanced breast, prostate or lung cancer experience metastasis to skeletal tissue. This is often a source of pain and suffering.

Exterior irradiation and medication, including radioactive substances injected into the bloodstream, can retard cancer growth in skeletal tissue, but now a new radium isotope may offer a new and better alternative. The first tests on Norwegian and Swedish patients are currently in progress, and the experience thus far gives grounds for optimism.

Isotopes are incorporated into skeletal tissue
Special cells called osteoclasts help build up skeletal tissue and try to help repair damaged tissue in areas affected by cancer. When small doses of the element radium are injected into the bloodstream, the osteoclasts will incorporate radium instead of calcium. This means radium can be incorporated into skeletal tissue, where it will give off radiation that kills cancer cells.

"Today, this type of ’internal’ radiation therapy is usually based on pharmaceuticals that contain strontium. Strontium has a scope of six to seven millimetres, meaning it can damage bone marrow and impair the production of new blood cells. But radium223 has a scope of just two millimetres. This leads us to believe that bone marrow will incur less damage", states Senior Medical Officer Lise Balteskard, PhD, University Hospital of Northern Norway. Along with physicians at the Norwegian Cancer Hospital, she has treated the first Norwegian patients with radium223.

The element radium is found in many isotope variants with different half-lives and scopes. The new isotope is a radium223 isotope developed at the Studsvik reactor in Sweden. In addition to the short scope of the radiation, it has a half-life of only 11 days.

Pain relief

In animal trials, this new isotope had good results on breast cancer that had spread to skeletal tissue. The animals lived longer and some were cured. (Cancer Research, June 2002). Experience from the first study on 20 Norwegian and Swedish patients indicates that many were able to use a lower dose of painkillers. This indicates that the treatment is effective.

"This is a phase 1 study where we are testing different doses to determine which dose we can administer without too many side effects. First and foremost, we are examining blood platelets and white cells in the blood to see whether their production is affected. The patients have advanced cancer. It was promising that many of them could take a lower dose of painkillers, as it implies improved quality of life. However, a phase 2 study is required to perform imaging, determine whether there is any reduction in malignant tissue, and systematically examine pain relief and survival", explains Balteskard.

"Is it possible that this new radium isotope might offer a cure for skeletal metastasis?"

"We believe this treatment might be administered the first time a tumour spreads to skeletal tissue, and that it might inhibit metastases. This would have an effect on pain and quality of life and could increase survival. It is still too early to tell whether such treatment might offer a cure if administered early enough", adds Balteskard.

Abstract P 459 in Poster Session 1 refers to the Norwegian-Swedish study on radium 223.
For more information, see the abstract from the symposium: Skeletal metastases, Monday, 08.45, inter alia in 15, Serafini, which will give an overview of bone-seeking radioactive isotopes for use in cancer treatment

Hanna Hånes | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>