Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calorie restricted diet prevents pancreatic inflammation and cancer

16.04.2008
M. D. Anderson, UT-Austin pre-clinical research points to preventive and therapeutic target

Prevention of weight gain with a restricted calorie diet sharply reduced the development of pancreatic lesions that lead to cancer in preclinical research reported today by researchers from The University of Texas at Austin and The University of Texas M. D. Anderson Cancer Center at the American Association for Cancer Research annual meeting.

The research sheds light on the connection between obesity, calorie intake and pancreatic cancer by comparing a calorie restricted diet, an overweight diet and an obesity-inducing diet in a strain of mice that spontaneously develops pancreatic lesions that lead to cancer.

"Obesity is a known risk factor for pancreatic cancer, but the mechanism underlying that relationship is unknown," said senior author Stephen D. Hursting, Ph.D., professor in M. D. Anderson's Department of Carcinogenesis and Chair of the Division of Nutritional Sciences at the University of Texas. "Our findings indicate that calorie restriction hinders development of pancreatic cancer, which could have implications for prevention and treatment of pancreatic tumors caused by chronic inflammation and obesity."

The group's analysis points to a connection between calorie intake and a protein called Insulin-like Growth Factor (IGF) -1, with obesity increasing and calorie restriction decreasing levels of IGF-1. IGF-1 is an important growth factor known to stimulate the growth of many types of cancer cells. Inflammatory signaling proteins also were found to be reduced in the blood of the calorie-restricted mice.

"Mice on the heavier diets had significantly more lesions and larger lesions than those on the restricted calorie diet," said first author Laura Lashinger, Ph.D., a post-doctoral fellow in Hursting's laboratory. The strain of mice, developed by Susan Fischer, professor in M. D. Anderson's Department of Carcinogenesis, spontaneously develops lesions associated with pancreatitis - inflammation of the pancreas. These lesions develop into pancreatic cancer and virtually all of these mice die within six to eight months.

The researchers fed the calorie restricted group a diet that was 30 percent lower in calories than that consumed by the overweight group and 50 percent lower than the obese group. Only 7.5 percent of mice on the calorie-restricted diet developed pancreatic lesions at the end of the experiment, and these lesions were so small that none exhibited symptoms of illness. For mice on the overweight diet, 45 percent developed lesions, as did 57.5 percent of those on the obesity-inducing diet. Lesions were also much larger in the overweight and obese mice than the calorie restricted mice.

While calorie restriction has been shown to have an anti-cancer effect in multiple species and for a variety of tumor types, its impact had not been well-studied in a model of pancreatic cancer. Pancreatic cancer is the fourth leading cause of cancer death and remains mostly intractable to existing treatments.

The decline in blood levels of inflammatory proteins in the calorie restricted mice makes sense, Lashinger notes, because fat tissue is a major source of inflammatory factors such as cytokines.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>