Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calorie restricted diet prevents pancreatic inflammation and cancer

16.04.2008
M. D. Anderson, UT-Austin pre-clinical research points to preventive and therapeutic target

Prevention of weight gain with a restricted calorie diet sharply reduced the development of pancreatic lesions that lead to cancer in preclinical research reported today by researchers from The University of Texas at Austin and The University of Texas M. D. Anderson Cancer Center at the American Association for Cancer Research annual meeting.

The research sheds light on the connection between obesity, calorie intake and pancreatic cancer by comparing a calorie restricted diet, an overweight diet and an obesity-inducing diet in a strain of mice that spontaneously develops pancreatic lesions that lead to cancer.

"Obesity is a known risk factor for pancreatic cancer, but the mechanism underlying that relationship is unknown," said senior author Stephen D. Hursting, Ph.D., professor in M. D. Anderson's Department of Carcinogenesis and Chair of the Division of Nutritional Sciences at the University of Texas. "Our findings indicate that calorie restriction hinders development of pancreatic cancer, which could have implications for prevention and treatment of pancreatic tumors caused by chronic inflammation and obesity."

The group's analysis points to a connection between calorie intake and a protein called Insulin-like Growth Factor (IGF) -1, with obesity increasing and calorie restriction decreasing levels of IGF-1. IGF-1 is an important growth factor known to stimulate the growth of many types of cancer cells. Inflammatory signaling proteins also were found to be reduced in the blood of the calorie-restricted mice.

"Mice on the heavier diets had significantly more lesions and larger lesions than those on the restricted calorie diet," said first author Laura Lashinger, Ph.D., a post-doctoral fellow in Hursting's laboratory. The strain of mice, developed by Susan Fischer, professor in M. D. Anderson's Department of Carcinogenesis, spontaneously develops lesions associated with pancreatitis - inflammation of the pancreas. These lesions develop into pancreatic cancer and virtually all of these mice die within six to eight months.

The researchers fed the calorie restricted group a diet that was 30 percent lower in calories than that consumed by the overweight group and 50 percent lower than the obese group. Only 7.5 percent of mice on the calorie-restricted diet developed pancreatic lesions at the end of the experiment, and these lesions were so small that none exhibited symptoms of illness. For mice on the overweight diet, 45 percent developed lesions, as did 57.5 percent of those on the obesity-inducing diet. Lesions were also much larger in the overweight and obese mice than the calorie restricted mice.

While calorie restriction has been shown to have an anti-cancer effect in multiple species and for a variety of tumor types, its impact had not been well-studied in a model of pancreatic cancer. Pancreatic cancer is the fourth leading cause of cancer death and remains mostly intractable to existing treatments.

The decline in blood levels of inflammatory proteins in the calorie restricted mice makes sense, Lashinger notes, because fat tissue is a major source of inflammatory factors such as cytokines.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>