Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to fight cancer: the silver shield

02.04.2008
Instead of a silver bullet to kill cancer cells, USC biologists discover a way to protect all other cells against chemotherapy; experts call the animal study a major advance in cancer research

Fasting for two days protects healthy cells against chemotherapy, according to a study appearing online the week of Mar. 31 in PNAS Early Edition.

Mice given a high dose of chemotherapy after fasting continued to thrive. The same dose killed half the normally fed mice and caused lasting weight and energy loss in the survivors.

The chemotherapy worked as intended on cancer, extending the lifespan of mice injected with aggressive human tumors, reported a group led by Valter Longo of the University of Southern California.

Test tube experiments with human cells confirmed the differential resistance of normal and cancer cells to chemotherapy after a short period of starvation.

Making chemotherapy more selective has been a top cancer research goal for decades. Oncologists could control cancers much better, and even cure some, if chemotherapy were not so toxic to the rest of the body.

Experts described the study as one of a kind.

“This is a very important paper. It defines a novel concept in cancer biology,” said cancer researcher Pinchas Cohen, professor and chief of pediatric endocrinology at the University of California, Los Angeles.

“In theory, it opens up new treatment approaches that will allow higher doses of chemotherapy. It’s a direction that’s worth pursuing in clinical trials in humans.”

Felipe Sierra, director of the Biology of Aging Program at the National Institute on Aging, said: “This is not just one more anti-cancer treatment that attacks the cancer cells. To me, that’s an important conceptual difference.”

Sierra was referring to decades of efforts by thousands of researchers working on “targeted delivery” of drugs to cancer cells. Study leader Longo focused instead on protecting all the other cells.

Sierra added that progress in cancer care has made patients more resilient and able to tolerate fasting, should clinical trials confirm its usefulness.

“We have passed the stage where patients arrive at the clinic in an emaciated state. Not eating for two days is not the end of the world,” Sierra said.

“This could have applicability in maybe a majority of patients,” said David Quinn, a practicing oncologist and medical director of USC Norris Hospital and Clinics. He predicted that many oncology groups would be eager to test the Longo group’s findings, and advised patients to look for a clinical trial near home.

Longo, an anti-aging researcher who holds joint appointments in gerontology and biological sciences at USC, said that the idea of protecting healthy cells from chemotherapy may have seemed impractical to cancer researchers, because the body has many different cells that respond differently to many drugs.

“It was almost like an idea that was not even worth pursuing. In fact it had to come from the anti-aging field, because that’s what we focus on: protecting all cells at once,” Longo said.

“What really was missing was a perspective of someone from the aging field to give this field a boost,” UCLA’s Cohen said.

The idea for the study came from the Longo group’s previous research on aging in cellular systems, primarily lowly baker’s yeast.

About five years ago, Longo was thinking about the genetic pathways involved both in the starvation response and in mammalian tumors.

When the pathways are silenced, starved cells go into what Longo calls a maintenance mode characterized by extreme resistance to stresses. In essence the cells are waiting out the lean period, much like hibernating animals.

But tumors by definition disobey orders to stop growing because the same genetic pathways are stuck in an “on” mode.

That could mean, Longo realized, that the starvation response might differentiate normal and cancer cells by their stress resistance, and that healthy cells might withstand much more chemotherapy than cancer cells.

The shield for healthy cells does not need to be perfect, Longo said. What matters is the difference in stress resistance between healthy and cancerous cells.

During the study, conducted both at USC and in the laboratory of Lizzia Raffaghello at Gaslini Children’s Hospital in Genoa, Italy, the researchers found that current chemotherapy drugs kill as many healthy mammalian cells as cancer cells.

“(But) we reached a two to five-fold difference between normal and cancer cells, including human cells in culture. More importantly, we consistently showed that mice were highly protected while cancer cells remained sensitive,” Longo said.

If healthy human cells were just twice as resistant as cancer cells, oncologists could increase the dose or frequency of chemotherapy.

“We were able to reach a 1,000-fold differential resistance using a tumor model in baker’s yeast. If we get to just a 10-20 fold differential toxicity with human metastatic cancers, all of a sudden it’s a completely different game against cancer,” Longo said.

“Now we need to spend a lot of time talking to clinical oncologists to decide how to best proceed in the human studies.”

Edith Gralla, a research professor of chemistry at UCLA, said: “It is the sort of opposite of the magic bullet. It’s the magic shield.”

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>