Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European membrane expertise to focus on new treatments for human diseases

18.03.2008
A new 15 million Euro project led by the University of Leeds aims to find novel treatments for many human diseases by bringing together the leading European experts in membrane proteins.

The project – the European Drug Initiative for Channels and Transporters (EDICT) – will target about 80 proteins, which play an important role in human diseases as varied as diabetes, heart disease, neuropsychiatric disorders like epilepsy and depression, osteoporosis, stomach ulcers and cataracts.

Membrane proteins are key to every process in the human body, channelling ions or transporting chemicals and so are ideal targets for new treatments. Infections by pathogenic bacteria, yeasts and parasites also involve their own membrane proteins, which can be specific targets for development of new drugs and antibiotics.

The research is mainly funded by the European Commission, involves twenty-seven partners from twelve countries – including two Nobel Laureates - and is set to last four years.

Coordinating the project is Peter Henderson, Professor of Biochemistry and Molecular Biology from Leeds’ Faculty of Biological Sciences.

“Membrane proteins are seen by many as the next potential source of drug development, and so the EC is keen to fund research in this area,” he said. “However, they are difficult to study and are poorly understood, though the recent sequencing of the human and other genomes show they make up about one third of all proteins in all organisms, including humans.”

“At the moment, few groups of membrane proteins are being seriously investigated by the pharmaceutical industry, so this project will help to fill that gap. By bringing together the best scientists in this challenging field from all over Europe, we hope to make a real advance towards new treatments for key diseases.”

Industry has also seen the benefit of bringing such expertise together under one umbrella and working with the academics will be pharmaceutical giant AstraZeneca and a smaller company, Xention, which specialises in the discovery and development of novel and selective ion channel drugs.

The researchers include biologists, structural biologists, chemists and experts in the three key technologies: x-ray crystallography, nuclear magnetic resonance, and electron microscopy.

The team aims to map out the structure of the proteins, so they can identify compounds that could be developed as a treatment for these diseases. Where they have already mapped some structures, the team will have a head start and hope to make real advances towards new treatments.

Other researchers joining the project from Leeds include Professors Steve Baldwin and Carola Hunte from the Faculty of Biological Sciences and Professor Peter Johnson and Dr Colin Fishwick from the School of Chemistry. All are members of Leeds’ Astbury Centre, the leading interdisciplinary research centre in the UK studying how life works at an atomic level.

The two Nobel Laureates involved in the research are Director of the Medical Research Council’s Dunn Human Nutrition Unit in Cambridge, Professor Sir John Walker, who also holds an honorary doctorate from the University of Leeds, and Director of the Max Planck Institute for Biophysics in Frankfurt, Germany, Professor Hartmut Michel.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>