Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paradoxical Alzheimer's Finding May Shed New Light on Memory Loss

13.03.2008
Do you remember the seventh song that played on your radio on the way to work yesterday? Most of us don’t, thanks to a normal forgetting process that is constantly “cleaning house” – culling inconsequential information from our brains. Researchers at the Buck Institute now believe that this normal memory loss is hyper-activated in Alzheimer’s disease (AD) and that this effect is key to the profound memory loss associated with the incurable neurodegenerative disorder.

Last year, this same group of researchers found that they could completely prevent Alzheimer’s disease in mice genetically engineered with a human Alzheimer’s gene—“Mouzheimer’s”—by blocking a single site of cleavage of one molecule, called APP for amyloid precursor protein. Normally, this site on APP is attacked by molecular scissors called caspases, but blocking that process prevented the disease.

Now they have studied human brain tissue and found that, just as expected, patients suffering from AD clearly show more of this cleavage process than people of the same age who do not have the disease. However, when they extended their studies to much younger people without Alzheimer’s disease, they were astonished to find an apparent paradox: these younger people displayed as much as ten times the amount of the same cleavage event as the AD patients. The researchers now believe they know why.

The Buck Institute study implicates a biochemical “switch” associated with that cleavage of APP, causing AD brains to become stuck in the process of breaking memories, and points to AD as a syndrome affecting the plasticity or malleability of the brain. The study, due to be published in the March 7 issue of the Journal of Alzheimer’s Disease, provides new insight into a molecular event resulting in decreased brain plasticity, a central feature of AD.

“Young brains operate like Ferraris – shifting between forward and reverse, making and breaking memories with a facility that surpasses that of older brains, which are less plastic,” said Dale Bredesen, MD, Buck Institute faculty member and leader of the research group. “We believe that in aging brains, AD occurs when the ‘molecular shifting switch’ gets stuck in the reverse position, throwing the balance of making and breaking memories seriously off kilter.”

In previous research, lead author Veronica Galvan, PhD, prevented this cleavage in mice genetically engineered to develop the amyloid plaques and deposits associated with AD. These surprising mice had normal memories and showed no signs of brain shrinkage or nerve cell damage, despite the fact that their brains were loaded with the sticky A-beta plaques that are otherwise associated with Alzheimer’s disease.

“A-beta is produced throughout the brain throughout life; we believe that it is a normal regulator of the synapses, the connections between neurons,” said Galvan, who added that AD, like cancer, is a disease in which imbalanced cell signaling plays an important role.

“The fact that many people develop A-beta plaques yet show no symptoms of AD tells us that the downstream signaling of A-beta—not just A-beta itself—is critical,” said Bredesen, “and these pathways can be targeted therapeutically. Simply put, we can restore the balance.” Continuing research at the Buck Institute focuses on nerve signaling and efforts to “disconnect” the molecular mechanism that throws memory-making in the reverse direction, as well as understanding mechanisms that support brain cell connections that are crucial to the process of memory making.

AD is an incurable neurodegenerative disease currently affecting 5.1 million Americans. AD results in dementia and memory loss, seriously affecting a person’s ability to carry out activities of daily living. AD costs the U.S. $148 billion annually, in addition to untold family suffering.

Joining Bredesen and Galvan as co-authors of the paper, “C-terminal cleavage of the amyloid precursor protein at Asp664: a switch associated with Alzheimer’s disease” are Surita Banwait, BA; Junli Zhang, MD; Olivia F. Gorostiza, Marina Ataie, BS; Wei Huang, BS; and Danielle Crippen, BA of the Buck Institute, as well as Edward H. Koo, MD, of the University of California, San Diego, Department of Neuroscience. The work was supported by the Joseph Drown Foundation, The National Institute on Aging, the Bechtel Foundation, and the Alzheimer’s Association.

Kris Rebillot | alfa
Further information:
http://www.buckinstitute.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>