Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mind over body: new hope for quadriplegics

12.03.2008
Around 2.5 million people worldwide are wheelchair bound because of spinal injuries. Half of them are quadriplegic, paralysed from the neck down. European researchers are now offering them new hope thanks to groundbreaking technology that uses brain signals alone to control computers, artificial limbs and even wheelchairs.

People left paralysed by spinal injuries or suffering from neurodegenerative diseases could regain a degree of independence thanks to a new type of non-intrusive brain-computer interface, or BCI, developed by the MAIA project.

Using electrical signals emitted by the brain and picked up by electrodes attached to the user’s scalp, the system allows people to operate devices and perform tasks that previously they could only dream of. So far, the team, led by the IDIAP Research Institute in Switzerland, has carried out a series of successful trials in which users have been able to manoeuvre a wheelchair around obstacles and people using brainpower alone.

“We have demonstrated that it is possible for someone to control a complex mechanical device with their minds, and this opens up all sorts of possibilities,” says MAIA coordinator José del R. Millán.

Though BCIs, for people with impaired movement and for other uses, have been under development for many years, they have had varying degrees of success, largely because of the difficulties of turning brain signals into accurate mechanical movement. What sets the EU-funded MAIA system apart is that it does not rely on the human brain alone to do all the work, instead incorporating artificial intelligence into the device being used.

Intelligence meets artificial intelligence
A person using the MAIA BCI to control a wheelchair, for example, only has to think about going straight ahead or turning left and the chair follows their command. However, they do not have to worry about colliding with obstacles – even moving ones such as people – because the wheelchair itself monitors and reacts to its environment.

“A user can tell the chair to go straight ahead, but it will not just randomly roll in that direction if there is a wall or a flight of stairs in the way,” Millán notes. “What we have done is combine the intelligence of the person with the artificial intelligence of the device.”

In a sense, the artificial intelligence embedded in the chair acts much like a human’s subconscious. People, for example, do not consciously send commands to every muscle in each leg in order to walk and do not think where to step to avoid an obstacle – they do it subconsciously. Similarly, a wheelchair-bound user of the MAIA BCI simply has to send the signal to go in a certain direction and the chair figures out how to get there.

But the user always stays in control!

Keeping the user in control
“We wanted to see how much of the movement was down to the user’s brain signals and how much was due to the intelligence of the chair. It turned out that the wheelchair intervened between 10 and 40 percent of the time depending on the user and the environment.

“In one demonstration in which someone was manoeuvring the chair for six hours, the computer intelligence kicked in more frequently later on as the person became increasingly tired and made more mistakes,” Millán says.

Importantly, the chair can recognise from the user’s brain signals if it has made a mistake, and, through tactile devices similar to the vibrators used in mobile phones, it can send feedback to users about the direction they are going that enhances their sense of awareness beyond the visual.

Millán notes that the same technology could be applied to artificial limbs to allow quadriplegics to pick up objects or unlock a door. By using the BCI to interact with computer systems, meanwhile, they could control the lighting in their homes, surf the internet, or change the channels on the TV. Those simpler brain-computer interactions, which have the potential to become the basis for commercial systems sooner, will be the focus of a follow-up EU project called TOBI that is due to begin in September and which will also be led by Millán.

“For a wheelchair, such as the one developed in MAIA, to reach the market would take extensive trials to prove that the technology is robust enough. We can’t have it breaking down when someone is in the middle of the street,” Millán notes.

Carrying out such validation trials remains a goal of the project partners who are actively seeking further funding and investment to continue their work.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89624

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>