Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy effectively treats deep vein thrombosis

31.01.2008
A novel treatment for blood clots in the legs appears to be safe and effective, according to a pilot study published in the February issue of Radiology.

The study found that injecting or “lacing” the clot with a fiber-binding thrombolytic agent effectively treats deep vein thrombosis (DVT) and reduces the risk of subsequent recurrence or bleeding.

“This treatment regimen is able to clear blood clots rapidly and safely, restoring blood flow in the veins of the lower leg, and the results are durable,” said lead author Richard Chang, M.D., chief of the interventional radiology section of the Department of Radiology, Clinical Center, National Institutes of Health (NIH), Bethesda, Md.

DVT is a common and serious health problem in which a blood clot, or thrombus, form in the deep veins, particularly in the lower leg or thigh. Complications occur when the clot breaks off and travels to the lungs, resulting in pulmonary embolism, a potentially fatal condition.

Most patients with DVT are treated solely with anticoagulation therapy (blood thinners) and compression stockings. However, studies have shown that one-third of these patients will suffer from post-thrombotic syndrome, characterized by pain, swelling, or in severe cases by changes in skin color or skin ulceration. Another third are likely to have another clot or pulmonary embolism within five years of their initial DVT.

Treatments with thrombolytic (clot-dissolving) therapy could potentially protect against these occurrences, but can pose a bleeding risk. Therefore, Dr. Chang and colleagues sought to develop a safe, effective and affordable thrombolytic treatment regimen for DVT.

Twenty patients with acute DVT were treated with direct intraclot lacing of the thrombus with a clot-dissolving agent called alteplase and full systemic anticoagulation. Alteplase binds to the clot, so the procedure does not require continuous infusion of the drug, as do some thrombolytic therapies. With this treatment, after lacing one vein segment with alteplase, the interventional radiologist can immediately direct catheters to treat other vein segments to ensure that the entire clot has been adequately treated.

The results of the study showed that blood flow was restored throughout the deep venous system in 16 (80 percent) of the 20 patients during therapy with complete resolution of symptoms in 18 patients (90 percent) after six months of anticoagulation. Alteplase was cleared from the patients’ circulatory system within two hours of treatment, reducing the risk of subsequent bleeding.

There were no serious complications or bleeding during the treatment, and no cases of post-thrombotic syndrome or recurrent clotting during follow-up of 3.4 years.

“With this therapy, pain and swelling resolve rapidly, and, in most cases, the patient is able to resume all normal activity within a week,” said the study’s co-author, McDonald K. Horne III, M.D., from the hematology section of the Department of Lab Medicine, Clinical Center, NIH.

The authors caution that larger clinical trials are required to further support the efficacy of this promising treatment.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>