Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor provides simpler measurement of eye pressure

28.05.2002


On Friday, May 31, Anders Eklund, Department of Radiation Sciences, Medical Technology, Umeå University, Sweden, will defend his dissertation evaluating a new and simpler instrument for measuring the pressure of eye fluids, a key risk factor in glaucoma. Anders Eklund has a master’s in engineering and works at the Unit for Medical Technology and Informatics, Northern Sweden University Hospital. He has further developed and assessed a new type of sensor based on vibration technology. His work has targeted medical applications, above all measuring pressure in the eye and hardness in bodily tissue. High pressure in eye fluid is one of the prime risk factors in glaucoma. Intraocular pressure is routinely metered at eye clinics. The pressure is determined by flattening the cornea to make both the surface of the contact and the force of the contact measurable.



The dissertation presents a new and simpler method for measuring intraocular pressure: a system of sensors based on a piezo-electrically vibrating sensor element registers changes in the frequency of resonance, which is related to the contact surface. This resonance sensor is mounted on a force sensor, and when the instrument has been placed against the cornea, both the force and the surface of the contact are measured quickly and simultaneously; the eye pressure is determined on the basis of a coefficient between them. The results show that a simpler and quicker method of measuring pressure is possible thanks to this technique.
The capacity of this vibration sensor technique to measure contact surfaces has also been utilized in judging the hardness of prostate tissue removed by surgery. The study shows that the sensor can capture differences in hardness owing to the varying composition of different tissues. The composition and consistency of bodily tissues often change under disease conditions, such as cancer, and ultimately it should be possible to employ sensor technique to get an objective reading of tissue hardness, thereby improving diagnoses.

Hans Fällman | alphagalileo
Further information:
http://www.umu.se

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>