Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor provides simpler measurement of eye pressure

28.05.2002


On Friday, May 31, Anders Eklund, Department of Radiation Sciences, Medical Technology, Umeå University, Sweden, will defend his dissertation evaluating a new and simpler instrument for measuring the pressure of eye fluids, a key risk factor in glaucoma. Anders Eklund has a master’s in engineering and works at the Unit for Medical Technology and Informatics, Northern Sweden University Hospital. He has further developed and assessed a new type of sensor based on vibration technology. His work has targeted medical applications, above all measuring pressure in the eye and hardness in bodily tissue. High pressure in eye fluid is one of the prime risk factors in glaucoma. Intraocular pressure is routinely metered at eye clinics. The pressure is determined by flattening the cornea to make both the surface of the contact and the force of the contact measurable.



The dissertation presents a new and simpler method for measuring intraocular pressure: a system of sensors based on a piezo-electrically vibrating sensor element registers changes in the frequency of resonance, which is related to the contact surface. This resonance sensor is mounted on a force sensor, and when the instrument has been placed against the cornea, both the force and the surface of the contact are measured quickly and simultaneously; the eye pressure is determined on the basis of a coefficient between them. The results show that a simpler and quicker method of measuring pressure is possible thanks to this technique.
The capacity of this vibration sensor technique to measure contact surfaces has also been utilized in judging the hardness of prostate tissue removed by surgery. The study shows that the sensor can capture differences in hardness owing to the varying composition of different tissues. The composition and consistency of bodily tissues often change under disease conditions, such as cancer, and ultimately it should be possible to employ sensor technique to get an objective reading of tissue hardness, thereby improving diagnoses.

Hans Fällman | alphagalileo
Further information:
http://www.umu.se

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>