Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor provides simpler measurement of eye pressure

28.05.2002


On Friday, May 31, Anders Eklund, Department of Radiation Sciences, Medical Technology, Umeå University, Sweden, will defend his dissertation evaluating a new and simpler instrument for measuring the pressure of eye fluids, a key risk factor in glaucoma. Anders Eklund has a master’s in engineering and works at the Unit for Medical Technology and Informatics, Northern Sweden University Hospital. He has further developed and assessed a new type of sensor based on vibration technology. His work has targeted medical applications, above all measuring pressure in the eye and hardness in bodily tissue. High pressure in eye fluid is one of the prime risk factors in glaucoma. Intraocular pressure is routinely metered at eye clinics. The pressure is determined by flattening the cornea to make both the surface of the contact and the force of the contact measurable.



The dissertation presents a new and simpler method for measuring intraocular pressure: a system of sensors based on a piezo-electrically vibrating sensor element registers changes in the frequency of resonance, which is related to the contact surface. This resonance sensor is mounted on a force sensor, and when the instrument has been placed against the cornea, both the force and the surface of the contact are measured quickly and simultaneously; the eye pressure is determined on the basis of a coefficient between them. The results show that a simpler and quicker method of measuring pressure is possible thanks to this technique.
The capacity of this vibration sensor technique to measure contact surfaces has also been utilized in judging the hardness of prostate tissue removed by surgery. The study shows that the sensor can capture differences in hardness owing to the varying composition of different tissues. The composition and consistency of bodily tissues often change under disease conditions, such as cancer, and ultimately it should be possible to employ sensor technique to get an objective reading of tissue hardness, thereby improving diagnoses.

Hans Fällman | alphagalileo
Further information:
http://www.umu.se

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>