Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery major step forward in treating leukaemia

18.01.2008
Researchers at the University of East Anglia have discovered for the first time a pathway that makes cancerous leukaemia cells resistant to treatment.

The scientists found that death-resistant Acute Myeloid Leukaemia cells are given their resistance by a genetic anti-oxidant pathway called hemeoxygenase-1 or HO-1. This resistance pathway leads to relapse of the disease and non-responsiveness to treatments. When this pathway is inhibited, the cells lose their resistance and become responsive to death-inducing agents.

Published online in the journal Blood on Friday January 18, the discovery is the first stage in the development of new drugs that could significantly improve survival rates for leukaemia sufferers.

“This is a major step forward in the treatment of leukaemia and other cancers,” said Prof David MacEwan who led the research team.

“The next step will be a programme to develop a new set of targeted therapies to treat not only Acute Myeloid Leukaemia, but other leukaemias and other cancers.”

Leukaemia is one of the six biggest cancer killers in the UK and more people die of Acute Myeloid Leukaemia (AML) than any other form of leukaemia. AML attacks the white blood cells and is a common form in both children and adults with leukaemia. It is currently treated by a range of chemotherapy drugs. Many patients go on to have bone marrow transplants due to commonly developing drug-resistance to their initial chemotherapy.

The antioxidant response element (ARE) genes which include HO-1, protect cells from damage and their killing off by cytotoxic agents such as chemotherapy drugs. The team found that drug-resistant leukaemia cells have overactive ARE genes that cause them to be completely resistant to cytotoxic drugs, and that blocking this pathway reverts the cells into responding normally to cytotoxic agents.

Press Office | alfa
Further information:
http://www.uea.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>