Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual robot outlines damaged heart muscle

24.05.2002


In a joint project with the STW Technology Foundation, medical information technologists from Leiden have developed a virtual robot which meticulously scans the heart muscle using images of the heart. The contours detector reduces the work of specialists and does not affect the patients. The research group will present the results in the middle of May at a congress in Honolulu.



To map the condition of a patient’s heart, physicians have until now used a series of MRI images (magnetic resonance imaging). The images provide 10 cross-sections of the heart on 20 phases during a single heartbeat. Then on at least 40 of the 200 images the physician marks the contours of the heart muscle by hand. This very accurately but subjectively reveals where the heart muscle is less thick during the heartbeat. These parts of the heart wall have already died or receive less oxygen upon exertion. If the physician requires more information, he marks all 200 images.

In the newly-developed contours detector, a virtual robot delineates the heart boundaries on the MRI images. The contours indicate where the heart wall lies and therefore the thickness of the heart muscle at any given point. The robot is objective and self-learning. When the image has too little contrast for a boundary line to be drawn with certainty, the robot ’remembers’ an example from a previous `training`. Together with the rules dictated by the programmers, the intelligent system then constructs a ‘surgically precise’ contour. This makes the time-consuming drawing of the contours by hand obsolete. Patients are not even aware of the robot, as the entire process takes place in the computer using stored MRI images.


The robot moves like a car along the heart wall, drawing the contours on the images as it goes. The size, speed and minimum turning circle of the virtual vehicle are adjusted by the researchers to the individual properties of the patient’s heart, such as the weight and the amount of blood the heart can pump. Sensors on the front and side of the robot help it to navigate ‘safely’ so that it does not collide with the wall.

In this joint project with the STW Technology Foundation, the researchers from Leiden University Medical Center limited themselves to the automatic outlining of the left ventricle in the heart because this pumps blood to the body.

Michel Philippens | alphagalileo

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>