Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists overcome obstacles to stem cell heart repair

13.12.2007
Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) at Imperial College London have overcome two significant obstacles on the road to harnessing stem cells to build patches for damaged hearts.

Presenting the research at a UK Stem Cell Initiative conference today (13 December) in Coventry, research leader Professor Sian Harding will explain how her group have made significant progress in maturing beating heart cells (cardiomyocytes) derived from embryonic stem cells and in developing the physical scaffolding that would be needed to hold the patch in place in the heart in any future clinical application.

From the outset the Imperial College researchers have been aiming to solve two problems in the development of a stem cell heart patch. The first is undesirable side effects, such as arrhythmia, that can result from immature and undeveloped cardiomyocytes being introduced to the heart. The second is the need for a scaffold that is biocompatible with the heart and able to hold the new cardiomyocytes in place while they integrate into the existing heart tissue. Matching the material to human heart muscle is also hoped to prevent deterioration of heart function before the cells take over.

Professor Harding will tell the conference that the stem cell team, led by Dr Nadire Ali, co-investigator on the grant, have managed to follow beating embryonic stem cell-derived cardiomyocytes for up to seven months in the laboratory and demonstrate that these cells do mature. In this period the cells have coordinated beating activity, and they adopt the mature controls found in the adult heart by approximately four months after their generation from embryonic stem cells. These developed cardiomyocytes will then be more compatible with adult heart and less likely to cause arrhythmias.

The team have also overcome hurdles in the development of a biocompatible scaffold. Working closely with a group of biomaterial engineers, led by Dr Aldo Boccaccini and Dr Qizhi Chen, co-investigators on the grant, in the Department of Materials, Imperial College London, they have developed a new biomaterial with high level of biocompatibility with human tissue, tailored elasticity and programmable degradation. The latter quality is important as any application in the heart needs to be able to hold cells in place long enough for them to integrate with the organ but then degrade safely away. The researchers have found that their material, which shares the elastic characteristics of heart tissue, can be programmed to degrade in anything from two weeks upwards depending on the temperatures used during synthesis.

Professor Harding said: "Although we are still some way from having a treatment in the clinic we have made excellent progress on solving some of the basic problems with stem cell heart therapies. The work we have done represents a step forward in both understanding how stem cell-derived developing heart cells can be matured in the laboratory and how materials could be synthesised to form a patch to deliver them to damaged areas of the heart.

"A significant amount of hard work and research remains to be done before we will see this being used in patients but the heart is an area where stem cell therapies offer promise. We know that the stem cell-derived cardiomyocytes will grow on these materials, and the next step is to see how the material and cell combination behave in the long term."

Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "This research shows that although embryonic stem cell therapies are still some way away from the clinic, progress is being made on the basic biological developments. As with all new biomedical applications, an understanding of the underpinning fundamental science is essential to successfully moving forward."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media/releases/2007/071213_cardiomyocytes.html

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>