Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists overcome obstacles to stem cell heart repair

13.12.2007
Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) at Imperial College London have overcome two significant obstacles on the road to harnessing stem cells to build patches for damaged hearts.

Presenting the research at a UK Stem Cell Initiative conference today (13 December) in Coventry, research leader Professor Sian Harding will explain how her group have made significant progress in maturing beating heart cells (cardiomyocytes) derived from embryonic stem cells and in developing the physical scaffolding that would be needed to hold the patch in place in the heart in any future clinical application.

From the outset the Imperial College researchers have been aiming to solve two problems in the development of a stem cell heart patch. The first is undesirable side effects, such as arrhythmia, that can result from immature and undeveloped cardiomyocytes being introduced to the heart. The second is the need for a scaffold that is biocompatible with the heart and able to hold the new cardiomyocytes in place while they integrate into the existing heart tissue. Matching the material to human heart muscle is also hoped to prevent deterioration of heart function before the cells take over.

Professor Harding will tell the conference that the stem cell team, led by Dr Nadire Ali, co-investigator on the grant, have managed to follow beating embryonic stem cell-derived cardiomyocytes for up to seven months in the laboratory and demonstrate that these cells do mature. In this period the cells have coordinated beating activity, and they adopt the mature controls found in the adult heart by approximately four months after their generation from embryonic stem cells. These developed cardiomyocytes will then be more compatible with adult heart and less likely to cause arrhythmias.

The team have also overcome hurdles in the development of a biocompatible scaffold. Working closely with a group of biomaterial engineers, led by Dr Aldo Boccaccini and Dr Qizhi Chen, co-investigators on the grant, in the Department of Materials, Imperial College London, they have developed a new biomaterial with high level of biocompatibility with human tissue, tailored elasticity and programmable degradation. The latter quality is important as any application in the heart needs to be able to hold cells in place long enough for them to integrate with the organ but then degrade safely away. The researchers have found that their material, which shares the elastic characteristics of heart tissue, can be programmed to degrade in anything from two weeks upwards depending on the temperatures used during synthesis.

Professor Harding said: "Although we are still some way from having a treatment in the clinic we have made excellent progress on solving some of the basic problems with stem cell heart therapies. The work we have done represents a step forward in both understanding how stem cell-derived developing heart cells can be matured in the laboratory and how materials could be synthesised to form a patch to deliver them to damaged areas of the heart.

"A significant amount of hard work and research remains to be done before we will see this being used in patients but the heart is an area where stem cell therapies offer promise. We know that the stem cell-derived cardiomyocytes will grow on these materials, and the next step is to see how the material and cell combination behave in the long term."

Professor Nigel Brown, BBSRC Director of Science and Technology, commented: "This research shows that although embryonic stem cell therapies are still some way away from the clinic, progress is being made on the basic biological developments. As with all new biomedical applications, an understanding of the underpinning fundamental science is essential to successfully moving forward."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media/releases/2007/071213_cardiomyocytes.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>