Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non rejection bioreabsorbable scaffold for jaw implant, developed by Custom-Fit

10.02.2009
The EU funded project Custom-Fit has been working on a solution to the rejection issue of mandibular implants: a scaffold made using a brand new material which is bioreabsorbable, that is, once implanted, it is substituted by re-grown natural bone in 6-12 months.

The Custom-Fit project is a technological research program involving 30 partners from 12 European countries. Its goal is the development a new manufacturing paradigm for producing personalised products, customised to the individual shape of the human body.

This has been done by integrating Scanning Technologies, newly developed CAD systems (Computer Aided Design) and Rapid Manufacturing technologies, the so called ‘additive techniques, which build a object layer by layer, starting from a 3D design, adding material where needed instead of removing it where not.

The mandible implant has been chosen as one of the test benches to try out this new manufacturing technology, together with knee implants, trans-femoral prosthesis, and two consumer goods, motorbike seats and motorbike helmets, products that are well suited to be customised to meet individual body shapes.

The Custom-Fit way to manufacture a mandible implant takes advantage of the best available technologies in design, in material science and in manufacturing, thanks to the member partners of the Custom-Fit consortium.

The process is the following (Image #2). The jaw bone geometry is studied through Computerised Tomography, CT images are then worked using specialised software (Mimics by Materialise) capable of extracting the jaw bone surface in a standard file format for later surface design which uses STL (Standard Triangulation Language). This is capable of distinguishing the damaged part of the bone from the healthy one.

Then, a surface model of the implant, which has to replace the damaged bone part, is easily designed with a CAD system (3-matic, by Materialise in Belgium) that allows the direct playing with facet models (STL-files) avoiding the conversion to CAD-surfaces, which normally requires a long computer processing time; this dramatically shortens the implant design phase. Here, engineers and surgeons work in collaboration to decide were to cut the jaw and consequently the size of the scaffold.

The 3D model of the implant is then completed by adding the internal structure, i.e. adding porosity using more design software called Innerspace that was developed by the Custom-Fit partner, TNO, in the Netherlands.

Finally the model is sliced ready to be manufactured on a special Rapid Manufacturing tool, capable of printing multi-material and porous objects, using high viscosity resins, the Inkjet Printing tool also developed by TNO.

And one of the resins printable by IP is the bioreabsorbable resin developed by DSM, a Dutch company and Custom-Fit partner, that is responsible for new material development. First samples have been successfully printed (Image #3).

It will take years for the new scaffolds to be approved for implantation in human beings, but the approval procedure has now been started, with In-Vitro Cytoxicity tests.

Several advantages will be brought about by bioreabsorbable scaffolds: no rejection of the foreign material, new bone will be able to grow over time (for children), further treatment like dental implants will remain possible and definitively the implant will not be a foreign object any more, but will be completely replaced by new natural bone.

It is a revolution in implant surgery, Custom-Fit made the first step.

Sunny Martínez | alfa
Further information:
http://www.custom-fit.org

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>