Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non rejection bioreabsorbable scaffold for jaw implant, developed by Custom-Fit

10.02.2009
The EU funded project Custom-Fit has been working on a solution to the rejection issue of mandibular implants: a scaffold made using a brand new material which is bioreabsorbable, that is, once implanted, it is substituted by re-grown natural bone in 6-12 months.

The Custom-Fit project is a technological research program involving 30 partners from 12 European countries. Its goal is the development a new manufacturing paradigm for producing personalised products, customised to the individual shape of the human body.

This has been done by integrating Scanning Technologies, newly developed CAD systems (Computer Aided Design) and Rapid Manufacturing technologies, the so called ‘additive techniques, which build a object layer by layer, starting from a 3D design, adding material where needed instead of removing it where not.

The mandible implant has been chosen as one of the test benches to try out this new manufacturing technology, together with knee implants, trans-femoral prosthesis, and two consumer goods, motorbike seats and motorbike helmets, products that are well suited to be customised to meet individual body shapes.

The Custom-Fit way to manufacture a mandible implant takes advantage of the best available technologies in design, in material science and in manufacturing, thanks to the member partners of the Custom-Fit consortium.

The process is the following (Image #2). The jaw bone geometry is studied through Computerised Tomography, CT images are then worked using specialised software (Mimics by Materialise) capable of extracting the jaw bone surface in a standard file format for later surface design which uses STL (Standard Triangulation Language). This is capable of distinguishing the damaged part of the bone from the healthy one.

Then, a surface model of the implant, which has to replace the damaged bone part, is easily designed with a CAD system (3-matic, by Materialise in Belgium) that allows the direct playing with facet models (STL-files) avoiding the conversion to CAD-surfaces, which normally requires a long computer processing time; this dramatically shortens the implant design phase. Here, engineers and surgeons work in collaboration to decide were to cut the jaw and consequently the size of the scaffold.

The 3D model of the implant is then completed by adding the internal structure, i.e. adding porosity using more design software called Innerspace that was developed by the Custom-Fit partner, TNO, in the Netherlands.

Finally the model is sliced ready to be manufactured on a special Rapid Manufacturing tool, capable of printing multi-material and porous objects, using high viscosity resins, the Inkjet Printing tool also developed by TNO.

And one of the resins printable by IP is the bioreabsorbable resin developed by DSM, a Dutch company and Custom-Fit partner, that is responsible for new material development. First samples have been successfully printed (Image #3).

It will take years for the new scaffolds to be approved for implantation in human beings, but the approval procedure has now been started, with In-Vitro Cytoxicity tests.

Several advantages will be brought about by bioreabsorbable scaffolds: no rejection of the foreign material, new bone will be able to grow over time (for children), further treatment like dental implants will remain possible and definitively the implant will not be a foreign object any more, but will be completely replaced by new natural bone.

It is a revolution in implant surgery, Custom-Fit made the first step.

Sunny Martínez | alfa
Further information:
http://www.custom-fit.org

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>