Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing the risk of unnecessary chemo

09.11.2010
A fundamental principle of medicine is: "first, do no harm." However, for doctors who treat breast cancer, this is easier said than done.

Every year, almost 22,000 Canadian women are diagnosed with breast cancer — their treatment usually involves surgery to remove a tumour and then chemotherapy to reduce the risk of cancer returning. But studies show that for most patients with early stage breast cancer, chemotherapy following surgery is totally unnecessary and therefore does more harm than good.

Identifying whether a patient's cancer is at low or high risk of recurring would help doctors reduce unnecessary treatments for low risk patients. This could have a huge impact on a patient's quality of life and also significantly reduce the cost of health care.

Did you know?

Chemotherapy can be devastating both physically and emotionally. Side effects of breast cancer chemotherapy range from nausea, vomiting and hair loss to mouth sores, menopause, infertility, numbness and aching of the joints, hands and feet.

Currently, most doctors assess a patient's prognosis using their age and "tumour grade," but this approach doesn't work very well. Now, NRC researchers have developed a tool to determine which breast cancer patients have little risk of their disease recurring. The tool — an algorithm that identifies "gene expression signatures" or biomarkers that can predict low risk tumours with 87-100 percent accuracy in different groups of patients — has the potential to virtually eliminate unnecessary chemotherapy.

To conduct their study, which appeared in a recent issue of Nature Communications, Dr. Edwin Wang and his colleagues at the NRC Biotechnology Research Institute in Montreal (NRC-BRI) used published data on gene expression profiles from more than 1000 breast cancer samples. "Every tumour has a gene expression profile, which indicates how the patient's genes have changed," he explains. "We combined this data with information on the patient's outcome — such as whether the original tumour spread and how long the person survived — to develop our algorithm."

The NRC team now hopes to see its algorithm applied in a clinical setting. "We have a provisional patent on the intellectual property and we would like to get a Canadian company to license it and turn it into a kit format," says Dr. Maureen O'Connor of NRC-BRI, who co-authored the study. "We've had interest expressed from more than one company so far."

Dr. O'Connor adds that the NRC algorithm could be adapted to other types of cancer where over-treatment is common, such as prostate cancer. "Prostate cancer in particular is usually not an aggressive disease, but the treatment can be extreme," she says. "We would like to develop a test that can predict with 99 percent accuracy whether a patient's cancer is not aggressive, so they can make the best decision about whether to proceed with treatment right away."

In future, the algorithm may also help pave the way toward personalized therapy for cancer patients. "On average, every cancer patient has 14-16 mutated genes," says Dr. Wang. "Based on their unique genetic signature, we hope to figure out which mutations to target to block the cancer process in each patient."

NRC Media Relations | EurekAlert!
Further information:
http://www.nrc-cnrc.gc.ca

Further reports about: Canadian Light Source NRC NRC-BRI algorithm breast cancer cancer patients

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>