Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reducing the risk of unnecessary chemo

A fundamental principle of medicine is: "first, do no harm." However, for doctors who treat breast cancer, this is easier said than done.

Every year, almost 22,000 Canadian women are diagnosed with breast cancer — their treatment usually involves surgery to remove a tumour and then chemotherapy to reduce the risk of cancer returning. But studies show that for most patients with early stage breast cancer, chemotherapy following surgery is totally unnecessary and therefore does more harm than good.

Identifying whether a patient's cancer is at low or high risk of recurring would help doctors reduce unnecessary treatments for low risk patients. This could have a huge impact on a patient's quality of life and also significantly reduce the cost of health care.

Did you know?

Chemotherapy can be devastating both physically and emotionally. Side effects of breast cancer chemotherapy range from nausea, vomiting and hair loss to mouth sores, menopause, infertility, numbness and aching of the joints, hands and feet.

Currently, most doctors assess a patient's prognosis using their age and "tumour grade," but this approach doesn't work very well. Now, NRC researchers have developed a tool to determine which breast cancer patients have little risk of their disease recurring. The tool — an algorithm that identifies "gene expression signatures" or biomarkers that can predict low risk tumours with 87-100 percent accuracy in different groups of patients — has the potential to virtually eliminate unnecessary chemotherapy.

To conduct their study, which appeared in a recent issue of Nature Communications, Dr. Edwin Wang and his colleagues at the NRC Biotechnology Research Institute in Montreal (NRC-BRI) used published data on gene expression profiles from more than 1000 breast cancer samples. "Every tumour has a gene expression profile, which indicates how the patient's genes have changed," he explains. "We combined this data with information on the patient's outcome — such as whether the original tumour spread and how long the person survived — to develop our algorithm."

The NRC team now hopes to see its algorithm applied in a clinical setting. "We have a provisional patent on the intellectual property and we would like to get a Canadian company to license it and turn it into a kit format," says Dr. Maureen O'Connor of NRC-BRI, who co-authored the study. "We've had interest expressed from more than one company so far."

Dr. O'Connor adds that the NRC algorithm could be adapted to other types of cancer where over-treatment is common, such as prostate cancer. "Prostate cancer in particular is usually not an aggressive disease, but the treatment can be extreme," she says. "We would like to develop a test that can predict with 99 percent accuracy whether a patient's cancer is not aggressive, so they can make the best decision about whether to proceed with treatment right away."

In future, the algorithm may also help pave the way toward personalized therapy for cancer patients. "On average, every cancer patient has 14-16 mutated genes," says Dr. Wang. "Based on their unique genetic signature, we hope to figure out which mutations to target to block the cancer process in each patient."

NRC Media Relations | EurekAlert!
Further information:

Further reports about: Canadian Light Source NRC NRC-BRI algorithm breast cancer cancer patients

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>