Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing the risk of unnecessary chemo

09.11.2010
A fundamental principle of medicine is: "first, do no harm." However, for doctors who treat breast cancer, this is easier said than done.

Every year, almost 22,000 Canadian women are diagnosed with breast cancer — their treatment usually involves surgery to remove a tumour and then chemotherapy to reduce the risk of cancer returning. But studies show that for most patients with early stage breast cancer, chemotherapy following surgery is totally unnecessary and therefore does more harm than good.

Identifying whether a patient's cancer is at low or high risk of recurring would help doctors reduce unnecessary treatments for low risk patients. This could have a huge impact on a patient's quality of life and also significantly reduce the cost of health care.

Did you know?

Chemotherapy can be devastating both physically and emotionally. Side effects of breast cancer chemotherapy range from nausea, vomiting and hair loss to mouth sores, menopause, infertility, numbness and aching of the joints, hands and feet.

Currently, most doctors assess a patient's prognosis using their age and "tumour grade," but this approach doesn't work very well. Now, NRC researchers have developed a tool to determine which breast cancer patients have little risk of their disease recurring. The tool — an algorithm that identifies "gene expression signatures" or biomarkers that can predict low risk tumours with 87-100 percent accuracy in different groups of patients — has the potential to virtually eliminate unnecessary chemotherapy.

To conduct their study, which appeared in a recent issue of Nature Communications, Dr. Edwin Wang and his colleagues at the NRC Biotechnology Research Institute in Montreal (NRC-BRI) used published data on gene expression profiles from more than 1000 breast cancer samples. "Every tumour has a gene expression profile, which indicates how the patient's genes have changed," he explains. "We combined this data with information on the patient's outcome — such as whether the original tumour spread and how long the person survived — to develop our algorithm."

The NRC team now hopes to see its algorithm applied in a clinical setting. "We have a provisional patent on the intellectual property and we would like to get a Canadian company to license it and turn it into a kit format," says Dr. Maureen O'Connor of NRC-BRI, who co-authored the study. "We've had interest expressed from more than one company so far."

Dr. O'Connor adds that the NRC algorithm could be adapted to other types of cancer where over-treatment is common, such as prostate cancer. "Prostate cancer in particular is usually not an aggressive disease, but the treatment can be extreme," she says. "We would like to develop a test that can predict with 99 percent accuracy whether a patient's cancer is not aggressive, so they can make the best decision about whether to proceed with treatment right away."

In future, the algorithm may also help pave the way toward personalized therapy for cancer patients. "On average, every cancer patient has 14-16 mutated genes," says Dr. Wang. "Based on their unique genetic signature, we hope to figure out which mutations to target to block the cancer process in each patient."

NRC Media Relations | EurekAlert!
Further information:
http://www.nrc-cnrc.gc.ca

Further reports about: Canadian Light Source NRC NRC-BRI algorithm breast cancer cancer patients

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>