Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reducing energy efficiency boosts calorie burning in muscle


Injection that makes muscles less energy efficient may have potential as weight-loss therapy to treat obesity

What started as an evolutionary protection against starvation has become a biological "bad joke" for people who need to lose weight. The human body doesn't distinguish between dieting and possible starvation, so when there is a decrease in calories consumed, human metabolism increases its energy efficiency and weight loss is resisted.

Scientists at the University of Iowa and the Iowa City VA Medical Center have developed a targeted approach that overrides muscles' intrinsic energy efficiency and allows muscle to burn more energy, even during low to moderate exercise. The image shows colorized infrared images of mice after performing low-intensity exercise on a treadmill. The mouse on the right of the image was treated with a targeted vivo-morpholino injection that suppresses the KATP channel. The mouse on the left is a control.

Credit: Leonid Zingman, University of Iowa

In a new study published in the journal Molecular Therapy, a team from the University of Iowa and the Iowa City VA Medical Center has developed a targeted approach to override this "energy saving" mode and allow muscle to burn more energy, even during low to moderate exercise. The new findings might provide the basis of a therapy that could help people get a head start on losing weight by helping to overcome the body's natural resistance to weight loss.

"Our bodies are geared to be energetically efficient and this often works against us when we are trying to control or reduce our weight," says study co-author Denice Hodgson-Zingman, MD, UI associate professor of internal medicine. "This study shows for the first time that this energy efficiency can be manipulated in a clinically translatable way. While such an approach would not replace the need for a healthy diet or exercise, it could jump start the process of weight loss by overcoming the initial hurdles imposed by our energy-efficient physiology."

The new study builds on previous research, which found that a protein called ATP-sensitive potassium (KATP) channel is a powerful modulator of energy efficiency in skeletal muscle even during low-intensity activity. The UI team showed that altering the activity of the KATP protein causes skeletal muscles to become less efficient and burn more calories.

To turn this finding into a therapy, however, the team needed an approach that disrupted the channel's activity in a very isolated and controlled way. The gene therapy method used in the earlier mouse studies is not feasible for human patients, and a drug that inhibits the channel protein would target not only the channels in muscle but also those in the heart, which could produce very dangerous side effects.

In the new study, the researchers devised a relatively simple solution. They made a compound called a vivo-morpholino, which suppresses production of KATP. Injecting this compound into the thigh muscles of mice produced a local loss of the protein but did not affect the protein in other organs or even in neighboring skeletal muscles. The study showed that the injected muscles burned more calories than untreated muscle without significantly affecting the muscle's ability to tolerate exercise.

Obesity is a significant public health problem in the developed world, and the CDC estimates that more than one in three American adults are obese. Exercise is considered a mainstay of weight control or weight loss, but many people find it difficult to engage in moderate or strenuous exercise because of other health problems or limitations such as lung or heart disease, arthritis, neuropathy, or stroke.

"By making skeletal muscles less energy efficient, they burn more calories, even while doing [normal] daily activities," says study co-author Leonid Zingman, MD, UI associate professor of internal medicine and a staff physician at the Iowa City VA Medical Center. "With this intervention, the benefits of exercise in burning calories could be accessible to a broader range of people by making the calorie burning effects of skeletal muscle greater even at low levels of activity that most people would be able to undertake."

Zingman and Hodgson-Zingman both are members of the Francois M Abboud Cardiovascular Research Center and the Fraternal Order of Eagles Diabetes Research Center at the UI. The research team also included UI scientists Siva Rama Krishna Koganti, Zhiyong Zhu, Ekaterina Subbotina, Zhan Gao, Ana Sierra, Manuel Proenza, and Liping Yang, and Mayo Clinic researcher Alexey Alekseev.

The research was funded in part by grants from the National Institutes of Health and the Department of Veterans Affairs.

Media Contact

Jennifer Brown


Jennifer Brown | EurekAlert!

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>