Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing energy efficiency boosts calorie burning in muscle

23.02.2015

Injection that makes muscles less energy efficient may have potential as weight-loss therapy to treat obesity

What started as an evolutionary protection against starvation has become a biological "bad joke" for people who need to lose weight. The human body doesn't distinguish between dieting and possible starvation, so when there is a decrease in calories consumed, human metabolism increases its energy efficiency and weight loss is resisted.


Scientists at the University of Iowa and the Iowa City VA Medical Center have developed a targeted approach that overrides muscles' intrinsic energy efficiency and allows muscle to burn more energy, even during low to moderate exercise. The image shows colorized infrared images of mice after performing low-intensity exercise on a treadmill. The mouse on the right of the image was treated with a targeted vivo-morpholino injection that suppresses the KATP channel. The mouse on the left is a control.

Credit: Leonid Zingman, University of Iowa

In a new study published in the journal Molecular Therapy, a team from the University of Iowa and the Iowa City VA Medical Center has developed a targeted approach to override this "energy saving" mode and allow muscle to burn more energy, even during low to moderate exercise. The new findings might provide the basis of a therapy that could help people get a head start on losing weight by helping to overcome the body's natural resistance to weight loss.

"Our bodies are geared to be energetically efficient and this often works against us when we are trying to control or reduce our weight," says study co-author Denice Hodgson-Zingman, MD, UI associate professor of internal medicine. "This study shows for the first time that this energy efficiency can be manipulated in a clinically translatable way. While such an approach would not replace the need for a healthy diet or exercise, it could jump start the process of weight loss by overcoming the initial hurdles imposed by our energy-efficient physiology."

The new study builds on previous research, which found that a protein called ATP-sensitive potassium (KATP) channel is a powerful modulator of energy efficiency in skeletal muscle even during low-intensity activity. The UI team showed that altering the activity of the KATP protein causes skeletal muscles to become less efficient and burn more calories.

To turn this finding into a therapy, however, the team needed an approach that disrupted the channel's activity in a very isolated and controlled way. The gene therapy method used in the earlier mouse studies is not feasible for human patients, and a drug that inhibits the channel protein would target not only the channels in muscle but also those in the heart, which could produce very dangerous side effects.

In the new study, the researchers devised a relatively simple solution. They made a compound called a vivo-morpholino, which suppresses production of KATP. Injecting this compound into the thigh muscles of mice produced a local loss of the protein but did not affect the protein in other organs or even in neighboring skeletal muscles. The study showed that the injected muscles burned more calories than untreated muscle without significantly affecting the muscle's ability to tolerate exercise.

Obesity is a significant public health problem in the developed world, and the CDC estimates that more than one in three American adults are obese. Exercise is considered a mainstay of weight control or weight loss, but many people find it difficult to engage in moderate or strenuous exercise because of other health problems or limitations such as lung or heart disease, arthritis, neuropathy, or stroke.

"By making skeletal muscles less energy efficient, they burn more calories, even while doing [normal] daily activities," says study co-author Leonid Zingman, MD, UI associate professor of internal medicine and a staff physician at the Iowa City VA Medical Center. "With this intervention, the benefits of exercise in burning calories could be accessible to a broader range of people by making the calorie burning effects of skeletal muscle greater even at low levels of activity that most people would be able to undertake."

Zingman and Hodgson-Zingman both are members of the Francois M Abboud Cardiovascular Research Center and the Fraternal Order of Eagles Diabetes Research Center at the UI. The research team also included UI scientists Siva Rama Krishna Koganti, Zhiyong Zhu, Ekaterina Subbotina, Zhan Gao, Ana Sierra, Manuel Proenza, and Liping Yang, and Mayo Clinic researcher Alexey Alekseev.

The research was funded in part by grants from the National Institutes of Health and the Department of Veterans Affairs.

Media Contact

Jennifer Brown
jennifer-l-brown@uiowa.edu
319-356-7124

 @uihealthcare

http://www.uihealthcare.com/index.html 

Jennifer Brown | EurekAlert!

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>