Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple periwinkles battle inflammatory diseases

04.05.2010
Natural supplement boasts excellent safety

A widely and safely used plant extract acts as a novel anti-inflammatory agent that may one day be used for the treatment of chronic obstructive pulmonary disease, or COPD, as well as other inflammatory conditions.

There is an urgent need for new therapies for the treatment of chronic inflammatory diseases, such as COPD, otitis media (ear infection), and atherosclerosis (chronic inflammation in the walls of arteries), because the most effective and commonly used agents – steroids – often cause serious side effects, such as liver damage, which prevent long-term use.

In a study published today in the Proceedings of the National Academy of Sciences, researchers at the University of Rochester Medical Center were the first to find that vinpocetine, a natural product derived from the periwinkle plant, acts as a potent anti-inflammatory agent when tested in a mouse model of lung inflammation, as well as several other types of human cells. Results of the study show that vinpocetine greatly reduces inflammation, and, unlike steroids, does not cause severe side effects.

"What is extremely exciting and promising about these findings is vinpocetine's excellent safety profile," said Chen Yan, Ph.D., associate professor within the Aab Cardiovascular Research Institute at the Medical Center and a senior author of the study. "Previously, most drugs tested in this area have failed, not because of a lack of efficacy, but because of safety issues. We're very encouraged by these results and believe vinpocetine has great potential for the treatment of COPD and other inflammatory diseases."

Vinpocetine is a well-known natural product that was originally discovered nearly 30 years ago and is currently used as a dietary supplement for the prevention and treatment of cognitive disorders, such as stroke and memory loss, in Europe, Japan and China. The therapy has no evidence of toxicity or noticeable side effects in human patients. Scientists at the University of Rochester hope to reposition this compound as an anti-inflammatory agent for the treatment of COPD, and potentially other inflammatory conditions, such as asthma, otitis media, rheumatoid arthritis, atherosclerosis and psoriasis in the future.

While steroids successfully combat inflammation, patients often pay a high price when it comes to side effects. Steroids can cause liver damage, and can also suppress the immune system, increasing the likelihood of infections. With such a high risk profile, steroids are usually only used for a short period of time, which is problematic when treating chronic diseases.

"In managing chronic conditions such as COPD, it is crucial to have a therapy that can be used safely over the long term," said Jian-Dong Li, M.D., Ph.D., professor in the Department of Microbiology and Immunology at the University of Rochester Medical Center and a senior author of the study. "There is a great need for a drug like vinpocetine, because patients currently have no good options when it comes to long-term care."

Vinpocetine decreases inflammation by targeting the activity of a specific enzyme, known as IKK. IKK is responsible for regulating inflammation, and does so through the activation of a key protein, nuclear-factor kappaB (NF-êB). By directly inhibiting IKK, vinpocetine is able to switch off NF-êB, which normally produces pro-inflammatory molecules that cause inflammation. Halting the activity of NF-êB ultimately reduces inflammation.

"Inflammation is a hallmark of a wide range of human diseases, so there is great potential for vinpocetine to be used for several indications," said Bradford C. Berk, M.D., Ph.D., CEO of the University of Rochester Medical Center and co-author of the study. "Given vinpocetine's efficacy and solid safety profile, we believe there is great potential to bring this drug to market."

Repositioning a therapy – taking a known compound that has been used safely in humans and testing it for a new application – can be an effective way to bring new therapies to market more quickly than starting the discovery process from scratch.

Inflammatory diseases are a major cause of illness worldwide. For example, chronic obstructive pulmonary disease is the fourth leading cause of death in the United States. In people with COPD, airflow is blocked due to chronic bronchitis or emphysema, making it increasingly difficult to breathe. Most COPD is caused by long-term smoking, although genetics may play a role as well. Approximately 13.5 million people in the United States are diagnosed with COPD each year, and in 2004 the annual cost of the disease was $37.2 billion.

The research was funded by the National Heart, Lung and Blood Institute, the National Institute of Allergy and Infectious Diseases, and the National Institute on Deafness and Other Communication Disorders at the National Institutes of Health, and the University of Rochester Medical Center. The University has applied for a patent for vinpocetine for use as an IKK-inhibitor for the treatment of COPD. Drs. Li, Yan and Berk have formed a start-up company, Rock Pharmaceuticals, with the hope of licensing the intellectual property rights from the University of Rochester and commercializing this technology.

In addition to Li, Yan and Berk, Kye-Im Jeon, Ph.D., Xiangbin Xu, Ph.D., Jae Hyang Lim, Ph.D., DVM, Hirofumi Jono, Ph.D., and Jun-ichi Abe, M.D., Ph.D., from the Aab Cardiovascular Research Institute and the Department of Microbiology and Immunology at the University of Rochester Medical Center participated in the study. Toru Aizawa, M.D., a former post-doctoral associate at the Aab Cardiovascular Research Institute, and Dong-Seok Kwon, Ph.D., a collaborator in Korea, also contributed to this study.

Emily Butler | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>