Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein prevents DNA damage in the developing brain and might serve as a tumor suppressor

24.04.2012
St. Jude Children's Research Hospital scientists discovered that the protein TopBP1 is indispensible for preventing the accumulation of DNA damage early in brain formation and might also serve as a tumor suppressor

St. Jude Children's Research Hospital scientists have rewritten the job description of the protein TopBP1 after demonstrating that it guards early brain cells from DNA damage. Such damage might foreshadow later problems, including cancer.

Researchers showed that cells in the developing brain require TopBP1 to prevent DNA strands from breaking as the molecule is copied prior to cell division. Investigators also reported that stem cells and immature cells known as progenitor cells involved at the beginning of brain development are more sensitive to unrepaired DNA damage than progenitor cells later in the process. Although more developmentally advanced than stem cells, progenitor cells retain the ability to become one of a variety of more specialized neurons.

"Such DNA strand breaks have great potential for creating mutations that push a normal cell toward malignancy," said Peter McKinnon, Ph.D., a St. Jude Department of Genetics member and the paper's senior author. "When we selectively knocked out TopBP1 in mice, the amount of DNA damage we saw suggests that TopBP1 is likely to be a tumor suppressor. We are exploring that question now."

The work appeared in the April 22 online edition of the scientific journal Nature Neuroscience. The research builds on McKinnon's interest in DNA repair systems, including the enzymes ATM and ATR, which are associated with a devastating cancer-prone neurodegenerative disease in children called ataxia telangiectasia, and a neurodevelopmental disorder called Seckel syndrome.

TopBP1 was known to activate ATR. Previous laboratory research by other investigators also suggested that activation made TopBP1 indispensable for DNA replication and cell proliferation. This study, however, showed that was not the case. Most progenitor cells in the embryonic mouse brain kept dividing after investigators switched off the TopBP1 gene.

"We showed that rather than being fundamentally important for building the machinery of replication, TopBP1's role is to monitor DNA damage and act when DNA damage occurs during replication," McKinnon said. The results offer insight into normal brain development, DNA damage repair mechanisms and cancer biology.

For this study, researchers tracked the impact of TopBP1 loss in progenitor cells at different stages in the developing mouse brain. The damage was most severe when the protein was knocked out in early progenitor cells. These rapidly dividing cells yield the next generations of progenitor cells that give rise to structures in the cortex involved in memory, vision, movement and sensation. When TopBP1 was silenced in the early progenitor cells, the cortex never developed. When TopBP1 was knocked out a day or two later in progenitor cells responsible for completing brain and nervous system development, the defects were present but less severe.

The progenitor cells that were created following the loss of TopBP1 were equally riddled with broken strands of DNA. In both the early and later progenitor cells, unrepaired DNA damage switched on the p53 gene that activated the cell's suicide pathway.

Researchers used low-dose radiation to show that early progenitor cells were more sensitive to the DNA strand breaks than were progenitor cells created a day or two later. Although the cells suffered comparable damage, the damage was more likely to induce cell suicide in the earliest progenitor cells. "This raises the likelihood that there is a different threshold to DNA damage in the early-born progenitors," researchers noted.

McKinnon added: "These early progenitor cells give rise to the cells that go on to make various brain structures, so it is really important that there are no errors in the blueprint of these starting cells. These findings show that TopBP1 plays a critical role in maintaining the integrity of the genome."

TopBP1 is not the only protein responsible for repairing broken DNA strands, but this study suggests it plays a unique role. When researchers turned off two other key repair factors, the proteins Lig4 and Xrcc1, in the cortex of developing mice, the loss resulted in much less severe defects than when TopBP1 was lost.

The study's first author is Youngsoo Lee of St. Jude. The other authors are Sachin Katyal, Susanna Downing, Jingfeng Zhao and Helen Russell, also of St. Jude.

The work was supported in part by the National Institutes of Health and ALSAC. Katyal is a Neoma Boadway AP Endowed Fellow.

St. Jude Children's Research Hospital

Since opening 50 years ago, St. Jude Children's Research Hospital has changed the way the world treats childhood cancer and other life-threatening diseases. No family ever pays St. Jude for the care their child receives and, for every child treated here, thousands more have been saved worldwide through St. Jude discoveries. The hospital has played a pivotal role in pushing U.S. pediatric cancer survival rates from 20 to 80 percent overall, and is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. It is also a leader in the research and treatment of blood disorders and infectious diseases in children. St. Jude was founded by the late entertainer Danny Thomas, who believed that no child should die in the dawn of life. To learn more, visit www.stjude.org. Follow us on Twitter @StJudeResearch.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>