Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein prevents DNA damage in the developing brain and might serve as a tumor suppressor

24.04.2012
St. Jude Children's Research Hospital scientists discovered that the protein TopBP1 is indispensible for preventing the accumulation of DNA damage early in brain formation and might also serve as a tumor suppressor

St. Jude Children's Research Hospital scientists have rewritten the job description of the protein TopBP1 after demonstrating that it guards early brain cells from DNA damage. Such damage might foreshadow later problems, including cancer.

Researchers showed that cells in the developing brain require TopBP1 to prevent DNA strands from breaking as the molecule is copied prior to cell division. Investigators also reported that stem cells and immature cells known as progenitor cells involved at the beginning of brain development are more sensitive to unrepaired DNA damage than progenitor cells later in the process. Although more developmentally advanced than stem cells, progenitor cells retain the ability to become one of a variety of more specialized neurons.

"Such DNA strand breaks have great potential for creating mutations that push a normal cell toward malignancy," said Peter McKinnon, Ph.D., a St. Jude Department of Genetics member and the paper's senior author. "When we selectively knocked out TopBP1 in mice, the amount of DNA damage we saw suggests that TopBP1 is likely to be a tumor suppressor. We are exploring that question now."

The work appeared in the April 22 online edition of the scientific journal Nature Neuroscience. The research builds on McKinnon's interest in DNA repair systems, including the enzymes ATM and ATR, which are associated with a devastating cancer-prone neurodegenerative disease in children called ataxia telangiectasia, and a neurodevelopmental disorder called Seckel syndrome.

TopBP1 was known to activate ATR. Previous laboratory research by other investigators also suggested that activation made TopBP1 indispensable for DNA replication and cell proliferation. This study, however, showed that was not the case. Most progenitor cells in the embryonic mouse brain kept dividing after investigators switched off the TopBP1 gene.

"We showed that rather than being fundamentally important for building the machinery of replication, TopBP1's role is to monitor DNA damage and act when DNA damage occurs during replication," McKinnon said. The results offer insight into normal brain development, DNA damage repair mechanisms and cancer biology.

For this study, researchers tracked the impact of TopBP1 loss in progenitor cells at different stages in the developing mouse brain. The damage was most severe when the protein was knocked out in early progenitor cells. These rapidly dividing cells yield the next generations of progenitor cells that give rise to structures in the cortex involved in memory, vision, movement and sensation. When TopBP1 was silenced in the early progenitor cells, the cortex never developed. When TopBP1 was knocked out a day or two later in progenitor cells responsible for completing brain and nervous system development, the defects were present but less severe.

The progenitor cells that were created following the loss of TopBP1 were equally riddled with broken strands of DNA. In both the early and later progenitor cells, unrepaired DNA damage switched on the p53 gene that activated the cell's suicide pathway.

Researchers used low-dose radiation to show that early progenitor cells were more sensitive to the DNA strand breaks than were progenitor cells created a day or two later. Although the cells suffered comparable damage, the damage was more likely to induce cell suicide in the earliest progenitor cells. "This raises the likelihood that there is a different threshold to DNA damage in the early-born progenitors," researchers noted.

McKinnon added: "These early progenitor cells give rise to the cells that go on to make various brain structures, so it is really important that there are no errors in the blueprint of these starting cells. These findings show that TopBP1 plays a critical role in maintaining the integrity of the genome."

TopBP1 is not the only protein responsible for repairing broken DNA strands, but this study suggests it plays a unique role. When researchers turned off two other key repair factors, the proteins Lig4 and Xrcc1, in the cortex of developing mice, the loss resulted in much less severe defects than when TopBP1 was lost.

The study's first author is Youngsoo Lee of St. Jude. The other authors are Sachin Katyal, Susanna Downing, Jingfeng Zhao and Helen Russell, also of St. Jude.

The work was supported in part by the National Institutes of Health and ALSAC. Katyal is a Neoma Boadway AP Endowed Fellow.

St. Jude Children's Research Hospital

Since opening 50 years ago, St. Jude Children's Research Hospital has changed the way the world treats childhood cancer and other life-threatening diseases. No family ever pays St. Jude for the care their child receives and, for every child treated here, thousands more have been saved worldwide through St. Jude discoveries. The hospital has played a pivotal role in pushing U.S. pediatric cancer survival rates from 20 to 80 percent overall, and is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. It is also a leader in the research and treatment of blood disorders and infectious diseases in children. St. Jude was founded by the late entertainer Danny Thomas, who believed that no child should die in the dawn of life. To learn more, visit www.stjude.org. Follow us on Twitter @StJudeResearch.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>