Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found in heart may be target for colon cancer therapies

14.09.2011
A protein critical in heart development may also play a part in colon cancer progression.

Research led by investigators from Vanderbilt-Ingram Cancer Center and the Vanderbilt Eye Institute suggests that the protein BVES (blood vessel endocardial substance) – which also is key in regulating corneal cells – may be a therapeutic target for halting colon cancer metastasis.

The study, appearing in the October issue of the Journal of Clinical Investigation, further suggests that BVES may be important more broadly in many, or most, epithelial cancers.

About 85 percent of cancers originate in epithelial cells that form the body's external and internal linings (such as the skin and the lining of the gastrointestinal tract).

However, the main clinical concern is not the primary tumor, but the potential for that tumor to leave its tissue of origin and spread throughout the body (a process called "metastasis").

A critical step in metastatic progression of epithelial cancers happens when epithelial cells "revert" to a less differentiated state – a process called "epithelial-mesenchymal transition" or EMT.

Ophthalmologist Min Chang, M.D., studies the healing process in the cornea, perhaps the most highly regulated epithelium in the body. From collaborative studies with David Bader, Ph.D., who discovered BVES and showed its importance in heart development, Chang found that BVES was highly expressed and regulated in corneal cells.

When BVES is disrupted in corneal cells, they become disorganized, almost "cancer-like," noted Chang, an assistant professor of Ophthalmology and Visual Sciences and co-author on the study.

Chang then brought these findings to the attention of colleague Christopher Williams, M.D., Ph.D., assistant professor of Medicine and Cancer Biology and co-author on the study.

"When he described these cells, it sounded a lot like the way cancer cells looked when they were undergoing metastasis," Williams said. "So it seemed reasonable to look in cancer for BVES-dependent phenotypes."

Chang and Williams teamed up with the lab of Daniel Beauchamp, M.D., to assess BVES expression in human colorectal cancers. They found that BVES levels were very low in all stages of colon cancer. They also noted decreased BVES levels in many other types of epithelial cancers (including breast) and in several colorectal cancer cell lines.

To uncover why BVES levels were reduced, the investigators enlisted the help of Wael El-Rifai, M.D., Ph.D., and colleagues. They determined that the BVES promoter (a DNA region that controls gene expression) was heavily modified (methylated), which silenced its expression. In cell experiments, the researchers showed that treating cells with a "demethylating" agent (the drug decitabine, which is currently used to treat myelodysplastic disorders) restored BVES expression. When BVES was expressed in colorectal cancer cell lines, they became more epithelial in nature and their tumor-like characteristics (in cell experiments and in animal models) decreased.

These findings suggest that treatment with agents to increase BVES levels might provide a way to decrease aggressive behaviors of colorectal and other epithelial cancers.

"In cancer, typically the primary tumor doesn't kill you; it's the metastatic disease that proves lethal," said Williams. "So if targeting BVES could interfere with metastasis, that would be very exciting."

The researchers also identified signaling pathways involved in BVES function that may represent other therapeutic targets – and that reveal new insights into the normal biological function of BVES. The findings could have implications in wound healing and other normal functions of epithelial cells, as well as for many types of epithelial cancer.

"We don't think it's just isolated to the colon; it pertains to a broad lot of epithelial cancers," Chang noted. "And that's a lot of cancers."

The research was supported by grants from the National Institute of Diabetes and Digestive and Kidney Disorders, National Cancer Institute, National Center for Research Resources, National Institute of General Medical Sciences, and the National Eye Institute.

Melissa Marino | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>