Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New prostate cancer test gives more accurate diagnosis

New screening test better detects aggressive cancer, reduces false positives

In a large multi-center clinical trial, a new PSA test to screen for prostate cancer more accurately identified men with prostate cancer -- particularly the aggressive form of the disease -- and substantially reduced false positives compared to the two currently available commercial PSA tests, according to newly published research from Northwestern Medicine.

The only currently available Food and Drug Administration-approved screening tests for prostate cancer result in a high number of false positives and lead to unnecessary biopsies and possible over-detection and over-treatment of indolent cancer which never would have caused suffering or death.

PSA stands for prostate-specific antigen, a substance whose elevated levels can indicate prostate cancer but can also be caused by prostate inflammation or enlargement or other conditions. Its lack of specificity can result in unnecessary biopsies.

"This new test is more specific and accurate than the currently available blood tests for early prostate cancer detection," said lead investigator William Catalona, M.D., director of the clinical prostate cancer program at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. "This will focus on the detection of more life-threatening prostate cancers and reduce unnecessary biopsies in men 50 years of age and older."

Catalona, known as the father of the PSA screening, was the first to show in 1991 that a simple blood test measuring PSA levels could be used to detect prostate cancer. He is a professor of urology at Northwestern's Feinberg School of Medicine and a urologist at Northwestern Memorial Hospital.

The study, which will be published in the May issue of the Journal of Urology, followed 900 patients from 10 sites, including Northwestern. The results showed the new screening test, a simple blood test called the Pro-PSA test, is particularly useful for patients with a normal prostate exam whose PSA is 2 to 10, a range considered the diagnostic gray zone because most men with higher levels have prostate cancer and most men with lower levels do not.

The Pro-PSA test measures a more specific PSA subform called (-2) Pro-PSA. The test becomes even more accurate when its results are analyzed with a mathematical formula that provides an overall Prostate Health Index. (The formula divides the Pro-PSA number by the free-PSA. Then the quotient of the two is multiplied by the square root of the total PSA. )

"The logic behind the formula is that the higher the Pro-PSA and the total PSA and the lower the free-PSA, the more likely the patient has aggressive prostate cancer," Catalona said.

The new Pro-PSA test was recently approved for commercial use in Europe, Catalona noted. "The FDA is currently reviewing our data from the study, and I'm hopeful that it will be approved in the United States as well," he said.

Catalona conducted the study in collaboration with Beckman Coulter, Inc., a biomedical test developer and manufacturer, for which he serves as a paid consultant.

The trial was supported by Beckman Coulter. Catalona's research also is supported by the National Cancer Institute and the Urological Research Foundation.

Marla Paul | EurekAlert!
Further information:

Further reports about: Catalona PSA PSA test Pro-PSA blood test prostate cancer screening test

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>